Research article

Neural networks-based adaptive fault-tolerant control for a class of nonstrict-feedback nonlinear systems with actuator faults and input delay

  • Received: 25 January 2024 Revised: 10 March 2024 Accepted: 02 April 2024 Published: 15 April 2024
  • MSC : 92B20, 93C10, 93C40

  • This paper addresses the challenge of adaptive control for nonstrict-feedback nonlinear systems that involve input delay, actuator faults, and external disturbance. To deal with the complexities arising from input delay and unknown functions, we have incorporated Pade approximation and radial basis function neural networks, respectively. An adaptive controller has been developed by utilizing the Lyapunov stability theorem and the backstepping approach. The suggested method guarantees that the tracking error converges to a compact neighborhood that contains the origin and that every signal in the closed-loop system is semi-globally uniformly ultimately bounded. To demonstrate the efficacy of the proposed method, an electromechanical system application example, and a numerical example are provided. Additionally, comparative analysis was conducted between the Pade approximation proposed in this paper and the auxiliary systems in the existing method. Furthermore, error assessment criteria have been employed to substantiate the effectiveness of the proposed method by comparing it with existing results.

    Citation: Mohamed Kharrat, Hadil Alhazmi. Neural networks-based adaptive fault-tolerant control for a class of nonstrict-feedback nonlinear systems with actuator faults and input delay[J]. AIMS Mathematics, 2024, 9(6): 13689-13711. doi: 10.3934/math.2024668

    Related Papers:

  • This paper addresses the challenge of adaptive control for nonstrict-feedback nonlinear systems that involve input delay, actuator faults, and external disturbance. To deal with the complexities arising from input delay and unknown functions, we have incorporated Pade approximation and radial basis function neural networks, respectively. An adaptive controller has been developed by utilizing the Lyapunov stability theorem and the backstepping approach. The suggested method guarantees that the tracking error converges to a compact neighborhood that contains the origin and that every signal in the closed-loop system is semi-globally uniformly ultimately bounded. To demonstrate the efficacy of the proposed method, an electromechanical system application example, and a numerical example are provided. Additionally, comparative analysis was conducted between the Pade approximation proposed in this paper and the auxiliary systems in the existing method. Furthermore, error assessment criteria have been employed to substantiate the effectiveness of the proposed method by comparing it with existing results.



    加载中


    [1] H. Q. Wang, H. R. Karimi, P. X. Liu, H. Yang, Adaptive neural control of nonlinear systems with unknown control directions and input dead-zone, IEEE Trans. Syst. Man Cybern. Syst., 48 (2018), 1897–1907. https://doi.org/10.1109/TSMC.2017.2709813 doi: 10.1109/TSMC.2017.2709813
    [2] D. S. Yang, T. Li, X. P. Xie, H. G. Zhang, Event-triggered integral sliding-mode control for nonlinear constrained-input systems with disturbances via adaptive dynamic programming, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 4086–4096. https://doi.org/10.1109/TSMC.2019.2944404 doi: 10.1109/TSMC.2019.2944404
    [3] X. H. Su, Z. Liu, G. Y. Lai, Y. Zhang, C. L. P. Chen, Event-triggered adaptive fuzzy control for uncertain strict-feedback nonlinear systems with guaranteed transient performance, IEEE Trans. Fuzzy Syst., 27 (2019), 2327–2337. https://doi.org/10.1109/TFUZZ.2019.2898156 doi: 10.1109/TFUZZ.2019.2898156
    [4] Y. Liu, X. P. Liu, Y. W. Jing, Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance, Inform. Sci., 468 (2018), 29–46. https://doi.org/10.1016/j.ins.2018.08.029 doi: 10.1016/j.ins.2018.08.029
    [5] X. W. Yang, W. X. Deng, J. Y. Yao, Disturbance-observer-based adaptive command filtered control for uncertain nonlinear systems, ISA Trans., 130 (2022), 490–499. https://doi.org/10.1016/j.isatra.2022.04.007 doi: 10.1016/j.isatra.2022.04.007
    [6] J. Zhang, J. W. Xia, W. Sun, Z. Wang, H. Shen, Command filter-based finite-time adaptive fuzzy control for nonlinear systems with uncertain disturbance, J. Franklin Inst., 356 (2019), 11270–11284. https://doi.org/10.1016/j.jfranklin.2019.05.042 doi: 10.1016/j.jfranklin.2019.05.042
    [7] K. K. Sun, J. B. Qiu, H. R. Karimi, Y. L. Fu, Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance, IEEE Trans. Fuzzy Syst., 29 (2021), 1460–1471. https://doi.org/10.1109/TFUZZ.2020.2979129 doi: 10.1109/TFUZZ.2020.2979129
    [8] M. Kharrat, M. Krichen, L. Alkhalifa, K. Gasmi, Neural networks-based adaptive command filter control for nonlinear systems with unknown backlash-like hysteresis and its application to single link robot manipulator, AIMS Math., 9 (2024), 959–973. https://doi.org/10.3934/math.2024048 doi: 10.3934/math.2024048
    [9] B. Guo, S. Y. Dian, T. Zhao, Robust NN-based decentralized optimal tracking control for interconnected nonlinear systems via adaptive dynamic programming, Nonlinear Dyn., 110 (2022), 3429–3446. https://doi.org/10.1007/s11071-022-07771-2 doi: 10.1007/s11071-022-07771-2
    [10] W. Sun, S. F. Su, Y. Q. Wu, J. W. Xia, Novel adaptive fuzzy control for output constrained stochastic nonstrict feedback nonlinear systems, IEEE Trans. Fuzzy Syst., 29 (2021), 1188–1197. https://doi.org/10.1109/TFUZZ.2020.2969909 doi: 10.1109/TFUZZ.2020.2969909
    [11] K. K. Sun, L. Liu, J. B. Qiu, G. Feng, Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems, IEEE Trans. Fuzzy Syst., 29 (2021), 786–796. https://doi.org/10.1109/TFUZZ.2020.2965890 doi: 10.1109/TFUZZ.2020.2965890
    [12] D. Cui, Z. R. Xiang, Nonsingular fixed-time fault-tolerant fuzzy control for switched uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 31 (2023), 174–183. https://doi.org/10.1109/TFUZZ.2022.3184048 doi: 10.1109/TFUZZ.2022.3184048
    [13] D. Cui, W. C. Zou, J. Guo, Z. R. Xiang, Adaptive fault-tolerant decentralized tracking control of switched stochastic uncertain nonlinear systems with time-varying delay, Int. J. Adapt. Control Signal Process., 36 (2022), 2971–2987. https://doi.org/10.1002/acs.3491 doi: 10.1002/acs.3491
    [14] H. Q. Wang, P. X. Liu, X. D. Zhao, X. P. Liu, Adaptive fuzzy finite-time control of nonlinear systems with actuator faults, IEEE Trans. Cybern., 50 (2020), 1786–1797. https://doi.org/10.1109/TCYB.2019.2902868 doi: 10.1109/TCYB.2019.2902868
    [15] P. Li, G. H. Yang, Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuator faults, J. Control Theory Appl., 7 (2009), 248–256. https://doi.org/10.1007/s11768-009-8074-6 doi: 10.1007/s11768-009-8074-6
    [16] Y. Q. Wang, N. Xu, Y. J. Liu, X. D. Zhao, Adaptive fault-tolerant control for switched nonlinear systems based on command filter technique, Appl. Math. Comput., 392 (2021), 125725. https://doi.org/10.1016/j.amc.2020.125725 doi: 10.1016/j.amc.2020.125725
    [17] M. Chen, G. Tao, Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone, IEEE Trans. Cybern., 46 (2016), 1851–1862. https://doi.org/10.1109/TCYB.2015.2456028 doi: 10.1109/TCYB.2015.2456028
    [18] L. B. Wu, G. H. Yang, Adaptive fault-tolerant control of a class of nonaffine nonlinear systems with mismatched parameter uncertainties and disturbances, Nonlinear Dyn., 82 (2015), 1281–1291. https://doi.org/10.1007/s11071-015-2235-6 doi: 10.1007/s11071-015-2235-6
    [19] Z. S. Wang, L. Liu, H. G. Zhang, Neural network-based model-free adaptive fault-tolerant control for discrete-time nonlinear systems with sensor fault, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017), 2351–2362. https://doi.org/10.1109/TSMC.2017.2672664 doi: 10.1109/TSMC.2017.2672664
    [20] Y. Q. Han, Design of decentralized adaptive control approach for large-scale nonlinear systems subjected to input delays under prescribed performance, Nonlinear Dyn., 106 (2021), 565–582. https://doi.org/10.1007/s11071-021-06843-z doi: 10.1007/s11071-021-06843-z
    [21] D. Cui, W. C. Zou, J. Guo, Z. R. Xiang, Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay, Appl. Math. Comput., 428 (2022), 127216. https://doi.org/10.1016/j.amc.2022.127216 doi: 10.1016/j.amc.2022.127216
    [22] Z. F. Li, T. S. Li, G. Feng, R. Zhao, Q. H. Shan, Neural network-based adaptive control for pure-feedback stochastic nonlinear systems with time-varying delays and dead-zone input, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 5317–5329. https://doi.org/10.1109/TSMC.2018.2872421 doi: 10.1109/TSMC.2018.2872421
    [23] H. Dastres, B. Rezaie, B. Baigzadehnoe, Neural-network-based adaptive backstepping control for a class of unknown nonlinear time-delay systems with unknown input saturation, Neurocomputing, 398 (2020), 131–152. https://doi.org/10.1016/j.neucom.2020.02.070 doi: 10.1016/j.neucom.2020.02.070
    [24] D. P. Li, Y. J. Liu, S. C. Tong, C. L. P. Chen, D. J. Li, Neural networks-based adaptive control for nonlinear state constrained systems with input delay, IEEE Trans. Cybern., 49 (2019), 1249–1258. https://doi.org/10.1109/TCYB.2018.2799683 doi: 10.1109/TCYB.2018.2799683
    [25] S. Yin, P. Shi, H. Y. Yang, Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics, IEEE Trans. Cybern., 46 (2016), 1926–1938. https://doi.org/10.1109/TCYB.2015.2457894 doi: 10.1109/TCYB.2015.2457894
    [26] T. Wang, J. Wu, Y. J. Wang, M. Ma, Adaptive fuzzy tracking control for a class of strict-feedback nonlinear systems with time-varying input delay and full state constraints, IEEE Trans. Fuzzy Syst., 28 (2020), 3432–3441. https://doi.org/10.1109/TFUZZ.2019.2952832 doi: 10.1109/TFUZZ.2019.2952832
    [27] B. Niu, L. Li, Adaptive backstepping-based neural tracking control for MIMO nonlinear switched systems subject to input delays, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 2638–2644. https://doi.org/10.1109/TNNLS.2017.2690465 doi: 10.1109/TNNLS.2017.2690465
    [28] Y. Wu, X. J. Xie, Adaptive fuzzy control for high-order nonlinear time-delay systems with full-state constraints and input saturation, IEEE Trans. Fuzzy Syst., 28 (2020), 1652–1663. https://doi.org/10.1109/TFUZZ.2019.2920808 doi: 10.1109/TFUZZ.2019.2920808
    [29] H. Q. Wang, S. W. Liu, X. B. Yang, Adaptive neural control for non-strict-feedback nonlinear systems with input delay, Inform. Sci., 514 (2020), 605–616. https://doi.org/10.1016/j.ins.2019.09.043 doi: 10.1016/j.ins.2019.09.043
    [30] Z. J. Yang, X. Y. Zhang, X. J. Zong, G. G. Wang, Adaptive fuzzy control for non-strict feedback nonlinear systems with input delay and full state constraints, J. Franklin Inst., 357 (2020), 6858–6881. https://doi.org/10.1016/j.jfranklin.2020.05.008 doi: 10.1016/j.jfranklin.2020.05.008
    [31] F. Wang, Z. Liu, Y. Zhang, C. L. P. Chen, Adaptive finite-time control of stochastic nonlinear systems with actuator failures, Fuzzy Sets Syst., 374 (2019), 170–183. https://doi.org/10.1016/j.fss.2018.12.005 doi: 10.1016/j.fss.2018.12.005
    [32] Y. Zhang, F. Wang, Adaptive neural control of non-strict feedback system with actuator failures and time-varying delays, Appl. Math. Comput., 362 (2019), 124512. https://doi.org/10.1016/j.amc.2019.06.026 doi: 10.1016/j.amc.2019.06.026
    [33] G. Niedbała, Application of artificial neural networks for multi-criteria yield prediction of winter rapeseed, Sustainability, 11 (2019), 1–13. https://doi.org/10.3390/su11020533 doi: 10.3390/su11020533
    [34] L. Ma, L. Liu, Adaptive neural network control design for uncertain nonstrict feedback nonlinear system with state constraints, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 3678–3686. https://doi.org/10.1109/TSMC.2019.2922393 doi: 10.1109/TSMC.2019.2922393
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(722) PDF downloads(55) Cited by(2)

Article outline

Figures and Tables

Figures(13)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog