
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(6): 13689–13711.
DOI: 10.3934/math.2024668
Received: 25 January 2024
Revised: 10 March 2024
Accepted: 02 April 2024
Published: 15 April 2024

Research article

Neural networks-based adaptive fault-tolerant control for a class of
nonstrict-feedback nonlinear systems with actuator faults and input delay

Mohamed Kharrat1 and Hadil Alhazmi2,*

1 Department of Mathematics, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi
Arabia

2 Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman
University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

* Correspondence: Email: hnalhazmi@pnu.edu.sa.

Abstract: This paper addresses the challenge of adaptive control for nonstrict-feedback nonlinear
systems that involve input delay, actuator faults, and external disturbance. To deal with the complexities
arising from input delay and unknown functions, we have incorporated Pade approximation and radial
basis function neural networks, respectively. An adaptive controller has been developed by utilizing
the Lyapunov stability theorem and the backstepping approach. The suggested method guarantees that
the tracking error converges to a compact neighborhood that contains the origin and that every signal in
the closed-loop system is semi-globally uniformly ultimately bounded. To demonstrate the efficacy of
the proposed method, an electromechanical system application example, and a numerical example
are provided. Additionally, comparative analysis was conducted between the Pade approximation
proposed in this paper and the auxiliary systems in the existing method. Furthermore, error assessment
criteria have been employed to substantiate the effectiveness of the proposed method by comparing it
with existing results.
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1. Introduction

In recent decades, there has been considerable focus on the control challenges associated
with nonlinear systems, driven by the widespread occurrence of nonlinear behavior in modern
control systems [1]. Various control strategies, including adaptive output feedback control, adaptive
event-triggered control, adaptive backstepping control, and adaptive sliding mode control have been
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developed [2,3]. The backstepping control technique offers a systematic approach to tackling tracking
control problems in nonlinear systems without the need to satisfy matching conditions. This technique
involves breaking down the intricate nonlinear system into multiple subsystems and subsequently
designing a virtual controller for each subsystem until the actual control law is derived [4]. In previous
works, adaptive backstepping controllers and variable structure adaptive backstepping controllers were
introduced to address the control problems of specific systems. However, for certain nonlinear systems,
obtaining accurate dynamic models proves exceedingly challenging. To address this challenge,
researchers have introduced neural networks (NNs) and fuzzy logic systems (FLSs) [5]. Given
their ability to identify unknown nonlinear functions, the application of NNs and FLSs in the
control of nonlinear systems has garnered significant interest and various studies in this domain
have been conducted [6–8]. For example, an adaptive NN-based decentralized control approach has
been formulated for interconnected nonlinear systems [9]. Additionally, an adaptive method has
been reported for stochastic nonlinear systems by using fuzzy approximation and output feedback
control [10]. However, it is important to clarify that the studies mentioned above did not consider the
fault-tolerance aspect of the controlled system.

Actuators and sensors regularly experience operational disruptions and faults in real-world
manufacturing environments, such as those involving flight control systems, satellite operations, and
nuclear power facilities [11]. These faults can result in unsatisfactory system performance and, in
severe cases, lead to instability. Ensuring system reliability and stability under all circumstances is
crucial. As a result, it is crucial to devise an effective fault-tolerant control scheme that ensures
the maintenance of stable and satisfactory control performance, even when faults are present [12].
Actuators ultimately age or breakdown entirely due to the increasing complexity and automation of
modern control systems, particularly when they are subjected to demanding and prolonged continuous
operations [13]. Actuator failures are common in many real-world applications, such as offshore
ship-mounted cranes, two-stage chemical reactors and highly adaptable airplanes [14]. To minimize
the negative impacts of faults on the system and get it as close to its pre-fault state as possible,
fault-tolerant control is required. Adaptive control can simultaneously achieve optimal performance
by dynamically modifying the controller design. As a result, combining fault-tolerant control with
adaptive control has become a primary area of research to improve the security and dependability of
industrial systems [15]. For instance, using the command filter technique, an adaptive fault-tolerant
control issue for switched nonlinear systems has been reported [16]. Furthermore, an adaptive fault-
tolerant control problem has been explored for a class of nonlinear large-scale systems under the
impact of dead-zone nonlinearity [17]. In addition, under the influence of uncertainties in mismatched
parameters and disturbances, an adaptive fault-tolerant control problem has been explored for nonaffine
nonlinear systems [18]. A model-free adaptive fault-tolerant control technique, relying on NNs, has
been documented for discrete-time nonlinear systems in the presence of sensor faults [19]. Despite
these accomplishments, to the best of our knowledge, there has been no attention given to fault-tolerant
control considering input delay in the existing literature.

Moreover, input delays can stem from the inherent characteristics of the plant or external factors
within the system, such as computation time or sensor measurements [20]. This occurrence has
the potential to result in a decline in system performance, or even induce instability [21]. Recent
efforts have introduced various approaches to tackle adaptive control schemes for nonlinear systems
grappling with input delays [22, 23]. In [24], the authors have presented a NN-based adaptive control

AIMS Mathematics Volume 9, Issue 6, 13689–13711.



13691

strategy for nonlinear systems facing state constraints and input delays. For single-input single-output
uncertain systems with unmodeled dynamics and encompassing unknown constant time delays, an
adaptive controller has been formulated using a backstepping design [25]. To address the adaptive
fuzzy tracking control problem for nonlinear systems with input delays and output constraints, Pade
approximation has been employed [26]. Furthermore, the exploration of adaptive output tracking
control for disturbed multiple-input multiple-output switched uncertain nonlinear systems with input
delays has been reported [27]. The authors of [28] proposed an adaptive fuzzy control methodology
specifically for high-order nonlinear time-delay systems characterized by input saturation and state
constraints.

Inspired by these considerations, here, we have undertaken the challenge of formulating an adaptive
controller for nonstrict-feedback nonlinear systems featuring actuator faults, external disturbances,
and input delays. Notably, considering the existing literature, the following contributions distinguish
this work:

(1) Compared with the existing results [1,15], this paper addresses the problem of nonlinear systems
with a nonstrict-feedback structure. The proposed control scheme deals with both input delay and
actuator faults in nonlinear systems. Instead of employing the auxiliary system from previous
research [29], this study utilizes the Pade approximation method to address the issue of input
delay. It introduces the variable xn+1 to handle input delay, thereby simplifying the design process.
In addition, external disturbance is also considered in this work. This demonstrates the versatility
and real-world usefulness of the proposed control strategy.

(2) By utilizing the capabilities of radial basis function NNs, this study employs a backstepping
method to create an adaptive fault-tolerant controller through the application of Lyapunov stability
theory. The controller ensures that all signals in the closed-loop systems are bounded and tracking
errors converge to a small area around the starting point. The effectiveness of the proposed method
is confirmed through comparisons with existing results by using error assessment criteria.

This article is organized into the following sections. The problem formulation and preliminary
information are provided in Section 2. Section 3 presents the main results. The results of the simulation
are then covered in Section 4, and the conclusion is given in Section 5.

2. System statement and preliminaries

Consider the following type of nonstrict-feedback nonlinear system with input delays and
actuator faults: 

ẋi = fi(x) + xi+1 + di(t), 1 ≤ i ≤ n − 1,
ẋn = fn(x) + u(v(t − τ)) + dn(t),
y = x1,

(2.1)

where x = [x1, . . . , xn]T is the state variable, fi(.) denotes the unknown nonlinear function with fi(0) =
0, v is the controller input to be designed, u is the system input that is subject to actuator fault, τ is the
input delay, which is a positive constant, y is the system output, di(.) represents the external disturbance,
and di(.) satisfies |di(.)| ≤ d̄i, with d̄i being the constant.

In this study, the input delay problem is addressed by estimating the input delay of the systems using
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the Pade approximation, as described in [30]. The Pade approximation is characterized as follows:

L{u(v(t − τ))} = exp(−τs)L{u(v(t))} ≈
1 − τs2
1 + τs2

L{u(v(t))}, (2.2)

where s is the Laplace variable and L{u(v(t))} is the Laplace transform of u(t).
Describe the new variable xn+1 as follows:

L{xn+1(t)} =
1 − τs2
1 + τs2

L{u(v(t))} +L{u(v(t))}. (2.3)

By the inverse Laplace transform and ρ = 2
td

, one has

ẋn+1 =
4
τ

u(v(t)) −
2
τ

xn+1 = 2ρu(v(t)) − ρxn+1. (2.4)

By using (2.2)–(2.4), the system (2.1) can be rewritten as follows:
ẋi = fi(xi) + xi+1 + di(t), 1 ≤ i ≤ n − 1,
ẋn = fn(xn) + xn+1 − u(v(t)) + dn(t),
ẋn+1 = −ρxn+1 + 2ρu(v(t)),
y = x1,

(2.5)

where u(v(t)) denotes the system input that is subject to actuator fault described by

u(v(t)) = λ(t, tλ)v + ur(t, tr), (2.6)

where λ(t, tλ) ∈ [0, 1] indicates the effectiveness of the actuation. v is a control signal, and tλ denotes the
time instant at which an actuation effectiveness fault will occur. An uncontrollable additive actuation
fault is represented by ur(t, tr), and the instant an additive actuation fault occurs is indicated by tr [31].

By using (2.6), the nonlinear system (2.5) can be rewritten as follows:
ẋi = fi(xi) + xi+1 + di(t), 1 ≤ i ≤ n − 1,
ẋn = fn(xn) + xn+1 − λ(t, tλ)v − ur(t, tr) + dn(x, t),
ẋn+1 = −ρxn+1 + 2ρλ(t, tλ)v + 2ρur(t, tr),
y = x1.

(2.7)

Remark 2.1. xn+1 is a newly introduced variable that manages the input delay. xn+1 can be
considered an intermediate rather than the system state variable [30].

The control goal is to formulate an adaptive fault-tolerant controller for the system (2.1) ensures
that all signals within the closed-loop exhibit semi-globally uniformly ultimately bounded (SGUUB)
behavior, and that the tracking error converges to a compact region around the origin. To achieve this
goal, the following assumptions and lemmas are necessary.
Assumption 2.1. [1] The desired trajectory signal yd(t) and its time derivatives up to the nth order are
assumed to be continuous and bounded.
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Assumption 2.2. [31] The unknown time-varying functions λ(t, tλ) and ur(t, tr) are bounded. Thus,
there exist positive constants λmin and umax such that λmin < λ(t, tλ) ≤ 1 and |ur(t, tr)| ≤ umax.
Remark 2.2. Assumption 2.1 ensures the boundedness of the reference signal yd(t) and its time
derivatives y(n)

d (t), thus guaranteeing the boundedness of all variables throughout the backstepping
derivation. This assumption is a standard practice in the design of adaptive controllers, has been
demonstrated in various works, including [1, 2, 5, 6]. The control gain λ(t, tλ) and the uncontrollable
additive actuation fault ur(t, tr) are unknown, as stated in Assumption 2.2. As such, the traditional
stability requirement is no longer applicable [31].
Radial basis function neural networks (RBFNNs). In this work, an RBFNN [32] is used to
approximate the continuous function fi(X) : Rn → R. The RBFNN is expressed in the following
form:

f (X) = WT S (X), (2.8)

where X ∈ ΩX ⊂ R
q represents the input vector and W = [w1, . . . ,wl]T ∈ Rl denotes the weight vector

of the RBFNN, where l(> 1) is the number of nodes. Additionally, S (X) = [s1(X), . . . , sl(X)]T ∈ Rl is
the basis function vector, and si(X) is given by

si(X) = exp
(
−

(X − µi)T (X − µi)
ζ2

)
, 1 ≤ i ≤ l, (2.9)

where µi = [µi1, . . . , µiq]T and ζ denotes the center and the width of the Gaussian function.
As illustrated in [32], the function f (X) is continuous and defined on a compact set ΩX. For any

ε > 0, there exists an RBFNN represented as W∗T S (X) such that the following relationship holds:

f (X) = W∗T S (X) + δ(X), ∀X ∈ ΩX, (2.10)

where δ(X) represents the approximation error with |δ(X)| < ε i, W∗ is the ideal weight vector defined as

W∗ = arg min
W∈Rl

sup
X∈ΩX

| f (X) −WT S (X)|. (2.11)

Lemma 2.1. [32] Let S (X) = [s1(X), . . . , sl(X)]T denote the basis function vector of the RBFNN, and
X = [x1, . . . , xn]T represent the input vector. For an arbitrary integer m ≤ n, let Xm = [x1, . . . , xm]T .
The following inequality holds:

∥S (X)∥2 ≤ ∥S (Xm)∥2. (2.12)

Lemma 2.2. [4] For all (m, n) ∈ R2 and ϵ > 0, the following inequality holds:

mn ≤
ϵ p

p
|m|p +

1
qϵ p |n|

q, (2.13)

where p > 1, q > 1, and (p − 1)(q − 1) = 1.
Remark 2.3. Lemma 2.1 explains an important and basic structural feature of RBFNNs. It is important
to emphasize that, in the context of backstepping design, Lemma 2.1 plays a crucial role in managing
the complete state variables [32].
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3. Adaptive fault-tolerant controller design and stability analysis

In this section, a design procedure for an adaptive fault-tolerant controller based on the backstepping
method for the system (2.1) will be developed. The proposed design procedure consists of n steps,
designed for an n-th order system. To design the controller, the first step involves a change of
coordinates given by 

e1 = x1 − yd,

ei = xi − αi−1, i = 1, 2, . . . , n − 1,
en = xn − αn−1 +

xn+1
ρ
,

(3.1)

where αi−1 stands for the virtual control law that will be introduced later. To obtain the main results,
the controller design process is separated into n steps.
Step 1. By using (2.7) and (3.1), the time derivative of e1 is given by

ė1 = ẋ1 − ẏd = f1(x) + x2 + d1(t) − ẏd. (3.2)

Choose the following Lyapunov function V1 as follows:

V1 =
1
2

e2
1 +

1
2r1
θ̃21, (3.3)

where e1 = x1 − yd, r1 > 0 is a design constant, and θ̃1 = θ1 − θ̂1 represents the estimation error, with θ̂1
denoting the estimate of the unknown parameter θ1, defined as θ1 = ∥W∗

1∥
2.

Then, by taking the time derivative of V1, one has

V̇1 = e1ė1 −
1
r1
θ̃1

˙̂θ1

= e1( f1(x) + e2 + α1 + d1(t) − ẏd) −
1
r1
θ̃1

˙̂θ1

= e1( f̄1(X1) + e2 + α1 + d1(t)) −
1
2

e2
1 −

1
r1
θ̃1

˙̂θ1, (3.4)

where f̄1(X1) = f1(x) + 1
2e1 − ẏd.

In (3.4), it is evident that f̄1(X1) contains the unknown smooth function f1. Consequently, the
RBFNN W∗T

1 S (X1) is employed to characterize f̄1(X1) in such a way that, for any given constant ε1 > 0,

f̄1(X1) = W∗T
1 S 1(X1) + δ1(X1), |δ1(X1)| ≤ ε1, (3.5)

where X1 = [x1, . . . , xn]T , and δ1(Z1) represents the estimation error.
By utilizing Lemmas 2.1 and 2.2, one has

e1 f̄1(X1) = e1

(
W∗T

1 S 1(X1) + δ1(X1)
)

≤ |e1|
(
∥W∗

1∥∥S 1(X1)∥ + ε1
)

≤ |e1|
(
∥W∗

1∥∥S 1(Z1)∥ + ε1
)

≤
1

2a2
1

e2
1θ1S T

1 (Z1)S 1(Z1) +
a2

1

2
+

e2
1

2
+
ε2

1

2
, (3.6)
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where θ1 = ∥W∗
1∥

2, Z1 = [x1]T , and a1 > 0 is a constant.
By using Young’s inequality, one has

e1d1(t) ≤
e2

1

2
+

d̄2
1

2
, (3.7)

where d̄1 > 0 is a constant.
The design of the virtual control law α1 is formulated as follows:

α1 = −k1e1 −
1

2a2
1

e1θ̂1S T
1 (Z1)S 1(Z1), (3.8)

where k1 > 0 and a1 > 0 are the design parameters.
By using Lemma 2.2 and (3.8), one has

e1α1 ≤= −k1e2
1 −

1
2a2

1

e2
1θ̂1S T

1 (Z1)S 1(Z1). (3.9)

By incorporating (3.6)–(3.9) into (3.4), we have

V̇1 ≤ −k1e2
1 +

(
1

2a2
1

e2
1S T

1 (Z1)S 1(Z1)
)

(θ1 − θ̂1) +
d̄2

1

2
+

a2
1

2
+

e2
1

2
+
ε2

1

2
−

1
r1
θ̃1

˙̂θ1. (3.10)

Given that θ̃1 = θ1 − θ̂1, (3.10) becomes

V̇1 ≤ −k1e2
1 +

d̄2
1

2
+

a2
1

2
+

e2
1

2
+
ε2

1

2
+

1
r1
θ̃1

(
1

2a2
1

r1e2
1S T

1 (Z1)S 1(Z1) − ˙̂θ1

)
. (3.11)

The adaptive law ˙̂θ1 is formulated as follows:

˙̂θ1 =
r1

2a2
1

e2
1S T

1 (Z1)S 1(Z1) − ϑ1θ̂1, θ̂1(0) ≥ 0, (3.12)

where r1 > 0 and a1 > 0 represent the design parameters.
By substituting (3.12) into (3.11), one has

V̇1 ≤ −k1e2
1 + e1e2 +

1
r1
ϑ1θ̃1θ̂1 +

a1

2
+
ε2

1

2
+

d̄2
1

2
. (3.13)

Step i (i = 1, 2, . . . , n − 1). According to (3.1) and (2.7), the time derivative of ei is given by

ėi = ẋi − α̇i−1 = fi(x) + xi+1 + di(t) − α̇i−1. (3.14)

We can obtain the derivative of αi−1 as follows:

α̇i−1 =

i−1∑
j=0

∂αi−1

∂y( j)
d

y( j+1)
r +

i−1∑
j=1

∂αi−1

∂x j
( f j(x) + x j+1 + d j(x, t)) +

i−1∑
j=1

∂αi−1

∂θ j
θ̇ j. (3.15)
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Consider a Lyapunov function as follows:

Vi = Vi−1 +
1
2

e2
i +

1
2ri
θ̃2i , (3.16)

where ei = xi − αi−1, θ̃i = θi − θ̂i is the estimation error, and ri > 0 is a design constant.
Further, the dynamics of Vi are given by

V̇i ≤ V̇i−1 + ei( fi(x) + ei+1 + αi + di(t) − α̇i−1) −
1
ri
θ̃i

˙̂θi. (3.17)

The derivative of Vi−1 is given as follows:

V̇i−1 ≤ −

i−1∑
j=1

k je2
j + ei−1ei +

i−1∑
j=1

1
r j
ϑ jθ̃ jθ̂ j +

i−1∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2

 . (3.18)

By incorporating (3.16) into (3.15), one has

V̇i ≤ −

i−1∑
j=1

k je2
j + ei−1ei +

i−1∑
j=1

1
r j
δ jθ̃ jθ̂ j +

i−1∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2

 + zi( f̄i(Xi) + ei+1 + di(t) + αi)

−
1
ri
θ̃i

˙̂θi −
1
2

e2
i , (3.19)

where f̄i(Xi) = fi(x) − α̇i−1 +
1
2ei. The function f̄i(Xi) involves the unknown smooth function fi.

Consequently, the RBFNN W∗T
i S i(Xi) is utilized to approximate the unknown function f̄i(Xi), ensuring

that, for any positive εi > 0,

f̄i(Xi) = W∗T
i S i(Xi) + δi(Xi), |δi(Xi)| < εi, (3.20)

where Xi = [x1, . . . , xn, θ̂1, . . . , θ̂i−1, λ1, . . . , λi]T .
Applying a similar approach as in (3.6), one has

ei f̄i ≤
1

2a2
i

z2
i θiS

T
i (Zi)S i(Zi) +

a2
i

2
+

e2
i

2
+
ε2

i

2
, (3.21)

where Zi = [x1, . . . , xi, θ̂1, . . . , θ̂i−1]T , θi = ∥W∗
i ∥

2, and ai > 0 is a design parameter.
Applying Young’s inequality, we have

eidi(t) ≤
e2

i

2
+

d̄2
i

2
, (3.22)

where d̄i > 0 is a constant.
The virtual control input signal αi can be selected as follows:

αi = −kiei − ei−1 −
1

2a2
i

eiθ̂iS T
i (Zi)S i(Zi), (3.23)

where ki and ai are positive design constants.
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By using Lemma 2.2 and (3.23), one has

eiαi ≤= −kie2
i −

1
2a2

i

e2
i θ̂iS

T
i (Zi)S i(Zi). (3.24)

By incorporating (3.21)–(3.24) into (3.19), we have

V̇i ≤ −

i∑
j=1

k je2
j + ei+1ei +

i−1∑
j=1

1
r j
ϑ jθ̃ jθ̂ j +

i∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2


+

(
1

2a2
i

e2
i S T

i (Zi)S i(Zi)
)

(θi − θ̂i) −
1
ri
θ̃i

˙̂θi.

(3.25)

Given that θ̃i = θi − θ̂i, (3.25) becomes

V̇i ≤ −

i∑
j=1

k je2
j + ei+1ei +

i−1∑
j=1

1
r j
ϑ jθ̃ jθ̂ j +

i∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2


+

1
r1
θ̃i

(
1

2a2
i

rie2
i S T

i (Zi)S i(Zi) − ˙̂θi

)
.

(3.26)

The adaptive law ˙̂θi can be selected as follows:

˙̂θi =
ri

2a2
i

e2
i S T

i (Zi)S i(Zi) − ϑiθ̂i, (3.27)

where ri and ϑi are positive design constants.
Moreover, by substituting (3.27) into (3.26), one has

V̇i ≤ −

i∑
j=1

k je2
j + ei+1ei +

i∑
j=1

1
r j
ϑ jθ̃ jθ̂ j +

i∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2

 . (3.28)

Step n. According to (3.1) and (2.7), the time derivative of en is given by

ėn = ẋn − α̇n−1 = fn(xn) + xn+1 − λ(t, tλ)v − ur(t, tr) + dn(t) − α̇n−1 +
ẋn+1

ρ
, (3.29)

where αn−1 is defined as follows:

α̇n−1 =

n−1∑
j=0

∂αn−1

∂y( j)
d

y( j+1)
r +

n−1∑
j=1

∂αn−1

∂x j
( f j(x) + x j+1 + d j(t)) +

n−1∑
j=1

∂αn−1

∂θ j
θ̇ j. (3.30)

Take the Lyapunov function as follows:

Vn = Vn−1 +
1
2

e2
n +

1
2rn
θ̃2n, (3.31)

where θ̃n = θn − θ̂n represents the estimation error and rn > 0 represents the design constant.
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Further, the dynamics of Vn are given by

V̇n ≤V̇n−1 + en

(
fn(xn) + xn+1 − λ(t, tλ)v − ur(t, tr) + dn(t) − α̇n−1 +

−ρxn+1

ρ

+
2ρλ(t, tλ)v
ρ

+
2ρur(t, tr)
ρ

)
−

1
rn
θ̃n

˙̂θn

≤V̇n−1 + en

(
fn(xn) + xn+1 − λ(t, tλ)v − ur(t, tr) + dn(t) − α̇n−1 − xn+1

+ 2λ(t, tλ)v + 2ur(t, tr)
)
−

1
rn
θ̃n

˙̂θn

≤V̇n−1 + en

(
fn(xn) + λ(t, tλ)v + ur(t, tr) + dn(t) − α̇n−1

)
−

1
rn
θ̃n

˙̂θn. (3.32)

The derivative of Vn−1 is given as follows:

V̇n−1 ≤ −

n−1∑
j=1

k je2
j +

n−1∑
j=1

1
r j
ϑ jθ̃ jθ̂ j +

n−1∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2

 . (3.33)

By incorporating (3.29) into (3.28), one has

V̇n ≤ −

n−1∑
j=1

k je2
j +

n−1∑
j=1

1
r j
δ jθ̃ jθ̂ j +

n−1∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2

 + en

(
f̄n(Xn) + λ(t, tλ)v + ur(t, tr) + dn(t)

)
−

1
rn
θ̃n

˙̂θn −
1
2

e2
n, (3.34)

where f̄n(Xn) = fn(x) − α̇n−1 +
1
2en. The function f̄n(Xn) involves the unknown smooth function fn.

Therefore, the RBFNN W∗T
n S n(Xn) is employed to estimate the unknown function f̄n(Xn), ensuring

that, for any positive εn > 0,

f̄n(Xn) = WT
n S n(Xn) + δn(Xn), |δn(Xn)| < εn, (3.35)

where Xn = [x1, . . . , xn, θ̂1, . . . , θ̂n−1]T .
Applying a similar approach as in (3.6), one has

en f̄n ≤
1

2a2
n
z2

nθnS T
n (Zn)S n(Zn) +

a2
n

2
+

e2
n

2
+
ε2

n

2
, (3.36)

where Zn = [x1, . . . , xn, θ̂1, . . . , θ̂n−1]T , θn = ∥W∗
n∥

2, and an > 0 is a design parameter.
Applying Young’s inequality, we have

endn(t) ≤
e2

n

2
+

d̄2
n

2
, (3.37)

where d̄n > 0 is a constant.
Utilizing Lemma 2.2 and considering Assumption 2.2, we have

enur(t, tr) ≤
e2

n

2
+

u2
max

2
. (3.38)
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The real control law v can be selected as follows:

v = −knen − en−1 −
1

2a2
n
enθ̂nS T

n (Zn)S n(Zn), (3.39)

where kn and an are positive design constants.
By using Lemma 2.2, Assumption 2.2 and (3.39), one has

env ≤= −knλmine2
n − enen−1 −

1
2a2

n
e2

nθ̂nS T
n (Zn)S n(Zn). (3.40)

By incorporating (3.36)–(3.40) into (3.34), we have

V̇i ≤ −

n−1∑
j=1

k je2
j − knλmine2

n +

i−1∑
j=1

1
r j
ϑ jθ̃ jθ̂ j +

i∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2

 + u2
max

2

+

(
1

2a2
n
e2

nS T
n (Zn)S n(Zn)

)
(θn − θ̂n) −

1
rn
θ̃i

˙̂θn.

(3.41)

Given that θ̃n = θn − θ̂n, (3.41) becomes

V̇n ≤ −

n−1∑
j=1

k je2
j − knλmine2

n +

n−1∑
j=1

1
r j
ϑ jθ̃ jθ̂ j +

n∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2

 + u2
max

2

+
1
rn
θ̃n

(
1

2a2
n
rne2

nS T
n (Zn)S n(Zn) − ˙̂θn

)
.

(3.42)

The adaptive law ˙̂θn can be selected as follows:

˙̂θn =
rn

2a2
n
e2

nS T
n (Zn)S n(Zn) − ϑnθ̂n, (3.43)

where rn and ϑn are positive design constants.
Furthermore, it results from substituting (3.43) into (3.42) and applying Assumption 2.2 that

V̇n ≤ −

n−1∑
j=1

k je2
j − knλmine2

n +

n∑
j=1

1
r j
ϑ jθ̃ jθ̂ j +

n∑
j=1

a2
j

2
+
ε2

j

2
+

d̄2
j

2

 + u2
max

2
. (3.44)

Theorem 3.1. Consider the nonstrict feedback nonlinear system (2.1) with input delay and actuator
faults under Assumptions 2.1 and 2.2, the real controller (3.39), the virtual control laws (3.8) and (3.23),
and the adaptive laws (3.12), (3.27) and (3.43). The presented control scheme guarantees the
achievement of the following control objectives: (1) The SGUUB nature of all variables within the
closed-loop system. (2) The convergence of the system’s tracking error to a compact region around the
origin.
Proof. By studying the definition of θ̃ j, one has

θ̃ jθ̂ j ≤ θ
2
j − θ̃

2
j . (3.45)
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By substituting (3.45) into (3.44), we have

V̇n ≤ −

n−1∑
j=1

k je2
j + knλmine2

n +

n∑
j=1

1
r j
ϑ jθ

2
j −

n∑
j=1

1
r j
ϑ jθ̃

2
j +

n∑
j=1

a2
j

2
+
ϵ2j

2
+

d̄2
j

2

 + u2
max

2

= −

n−1∑
j=1

k je2
j + knλmine2

n −

n∑
j=1

1
r j
ϑ jθ̃

2
j +

n∑
j=1

 1
r j
ϑ jθ

2
j +

a2
j

2
+
ϵ2j

2
+

d̄2
j

2

 + u2
max

2

≤ −a0

n∑
j=1

(
1
2

e2
j +

1
2r j
θ̃2j

)
+ b0

≤ −a0Vn + b0, (3.46)

where a0 = 2m, m = min{k1, . . . , knλmin, ϑ1, . . . , ϑn}, and b0 =
∑n

j=1

(
ϑ jθ

2
j

r j
+

a2
j

2 +
ϵ2j
2 +

d̄2
j

2

)
+

u2
max
2 .

Integrating (3.46) over the interval [0, t], we can derive the following inequality:

Vn(t) ≤ Vn(0)e−a0t +
b0

a0
(1 − e−a0t). (3.47)

Considering the definition of Vn in (3.31) and the inequality (3.47), it can be inferred that ei (i =
1, . . . , n) and θi (i = 1, . . . , n) are bounded. Taking e1 = x1 − yd and the boundedness of e1 and yd into
account, it implies that the state x1 is bounded. For ei = xi−αi−1 and the definition of the virtual control
signal αi (i = 1, . . . , n−1) along with Assumption 2.1, it can be concluded that xi (i = 2, . . . , n) remains
bounded. Additionally, from (3.39), it can be deduced that the control v is also bounded. Therefore, all
signals in the closed-loop system are SGUUB. Moreover, based on (3.47), one has

e2
1 ≤ 2

(
V(0) −

b0

a0

)
e−a0t +

b0

a0
. (3.48)

Hence, the proof is completed.
Figure 1 depicts the architecture of the control scheme that is being discussed.
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Figure 1. Architecture of control system.
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Remark 3.1. Improved tracking performance is achievable by reducing the IC values. However, it is
crucial to carefully select the appropriate ascertained. Furthermore, as can be ascertained from (3.46),
the tracking error decreases as the parameters ki, ϑi increase and bi decreases. It is important to keep in
mind that selecting a sufficiently high value for ki and ϑi results in a larger control energy. Typically,
both initial conditions and design parameters are determined through a trial-and-error method, where
system performance is observed and adjustments are made accordingly. Therefore, it is essential to
design the parameters appropriately in real-world engineering settings to achieve improved transient
performance and efficient control action while avoiding excess control energy.

4. Simulation results

In this section, the efficacy of the presented control schemes will be assessed through the two
examples. The methodology outlined in Theorem 3.1 will be employed to formulate controllers to
regulate the considered systems.
Example 4.1. Consider the following nonstrict-feedback nonlinear system:

ẋ1 = x2 + 1 − cos(x1x3) + x3 + x2 + 0.5 cos(t),
ẋ2 = x3 + x2

1x3e−x2
2 + sin(0.5t),

ẋ3 = u(v(t − τ)) + x1x2
2e−x2

3 + x3 sin(x1x2),
y = x1,

(4.1)

where f1(x) = 1−cos(x1x3)+x3+x2, f2(x) = x2
1x3e−x2

2 , f3(x) = x1x2
2e−x2

3+x3 sin(x1x2), d1(t) = 0.5 cos(t),
d2(t) = sin(0.5t), d3(t) = 0, τ = 1.5s.

The reference signal was set as yd = 0.5(sin(t) + 0.5 sin(0.5t)). The system input subject to actuator
fault described by u(v(t)) = λ(t, tλ)v + ur(t, tr) with λ(t, tλ) = 0.4 + 0.6 exp(−0.2t), and ur(t, tr) =
cos2(x1)x2. The following virtual control laws, real control law and, adaption laws are considered:

αi = −kiei − ei−1 −
1

2a2
i

eiθ̂iS T
i (Zi)S i(Zi), i = 1, 2.

v = −k3e3 − e2 −
1

2a2
3

e3θ̂3S T
3 (Z3)S 3(Z3),

˙̂θi =
ri

2a2
i

e2
i S T

i (Zi)S i(Zi) − ϑiθ̂i, i = 1, 2, 3.

(4.2)

The center of the receptive field was chosen as µi = [−1.5,−1,−0.5, 0, 0.5, 1, 1.5]T for i = 1, 2, 3,
and the Gaussian function’s width was set to ζ = 2. In the simulation, the design parameters were
determined using the trial-and-error method, as follows: k1 = k2 = 3, k3 = 6, a1 = a2 = a3 = 3, ϑ1 = 1,
ϑ2 = 1, ϑ3 = 1, r1 = 1, r2 = 1, r3 = 1. The simulation began with ICs set via the trial-and-error method
as [x1(0), x2(0), x3(0)]T = [0.5, 0.5, 0.5]T and [θ̂1(0), θ̂2(0), θ̂3(0)] = [0, 0, 0].

The simulation results are depicted in Figures 2–7. Figure 2 illustrates the trajectories of the system
output y = x1 and the reference signal yd. As observed in Figure 2, the output y = x1 adeptly tracks the
reference signal yd with bounded error, and the tracking error e1 is depicted in Figure 3. The trajectories
of x2 and x3 are presented in Figure 4. Figure 5 showcases the bounded adaptive laws θ̂1, θ̂2, and θ̂3,
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while Figure 6 displays the control input v and system input u. The simulation results affirm that the
proposed controller ensures the boundedness of all signals within the closed-loop system.
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Figure 2. The trajectories of x1 and yd.
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Figure 3. The trajectory of tracking error e1.
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Figure 4. The trajectories of system states x2 and x3.
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Figure 5. The trajectories of adaptive laws θ̂1, θ̂2, and θ̂3.
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Figure 7. Tracking error e1.

In this study, the effectiveness of the proposed method was validated through a comparison with an
existing control approach [29] that utilizes auxiliary systems to minimize the effects of input delay. In
contrast to the established control method, the proposed approach integrates Pade approximation. The
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comparison results, illustrated in Figure 7, clearly demonstrate a slight yet consistent improvement in
tracking error under the proposed control method relative to the existing approach [29].

Figures 2–7 collectively highlight that, through judicious parameter adjustments, the designed
controller effectively constrains all closed-loop system signals. This validation demonstrates the
effectiveness of the proposed controller.

Moreover, error assessment criteria [33] were employed to substantiate the effectiveness of the
proposed method in comparison to the existing approach [29]. For a given pair of data points
(yi(t), yid(t)) in the interval t ∈ [1, P] with P as the observations in the data set, the assessment error
criteria were as follows:

Mean squared error (MSE): =
∑P

t=1(yi(t) − yid)2

P
;

Root mean squared error (RMSE): =

√√
1
P

P∑
t=1

(yi(t) − yid(t))2;

Maximum absolute error (MAE): = max
1≤t≤P
|yi(t) − yid(t)|;

Normalized mean squared error (NMSE): =
∑P

t=1(yi(t) − yid(t))2∑P
t=1(yi(t) − ȳid)2

;

Sum of squared rrror (SSE): =
P∑

t=1

(yi(t) − yid(t))2;

Best fit rate (BFR): = 1 −
∑P

t=1(yi(t) − yid(t))2∑P
t=1(yi(t) − ȳid)2

× 100%,

where ȳid represents the mean of yid(t).
The results, as depicted in Table 1, demonstrate a marginal improvement in the proposed control

scheme relative to the existing control method [29]. This enhancement provides compelling evidence
of the effectiveness of the proposed control approach.

Table 1. Comparison of the tracking performance based on different error calculations.

Methods MSE RMSE MAE NMSE SSE BFR
Proposed method 0.0160 0.1266 0.5375 0.0998 6.6997 99.90%
Existing method in [29] 0.0171 0.1307 0.5187 0.1045 8.2522 99.90%

Remark 4.1. Understanding the convergence dynamics of the system components is largely dependent
on the time constant and half-life analyses. In Figure 2, the modest convergence speed for x1 is
indicated by a time constant of 19.6239 seconds, indicating that it takes about 0.3651 seconds to reach
half of its initial value. In Figure 3, a longer time constant of 32.6245 seconds is shown by the tracking
error (e1), which suggests a slower rate of convergence with a half-life of roughly 0.2685 seconds.
In Figure 5, θ̂1, θ̂2, and θ̂3 are shown to have time constants of 121.8149 seconds, 11.4806 seconds,
and 2.8463 seconds in that ratio. Additionally, the half-life of 0.0000 seconds that was consistently
reported for each parameter points to nuances in their convergence dynamics that are not explained by
the conventional half-life criterion of attaining half of the initial value.
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Example 4.2. To further illustrate the effectiveness of the proposed method, the electromechanical
system in [34] was employed. It is governed by the following dynamic equations:Mq̈ + Bq̇ + N sin(q) = I,

Lİ = Vϵ − RI − KBq̇,
(4.3)

where

M =
J
Kt
+

mL2
0

3Kt
+

2M0R2
0

5Kt
,

N =
mL0G
2Kt

+
M0L0G

Kt
,

B =
B0

Kt
,

and q̈, q̇, q stand for the link acceleration, velocity, and position, respectively. Vϵ represents the input.
J = 0.001625, Kt = 0.9, m = 0.506, L0 = 0.305, M0 = 0.434, R0 = 0.023, G = 9.8, and B0 = 0.01625.
The physical meaning of the electromechanical system can be found in [34]. Defining x1 = q, x2 = q̇,
x3 = I, and u(v(t − τ)) = Vϵ , the (4.3) can be rewritten as follows:

ẋ1 = x2 + 0.2 sin(t),
ẋ2 =

x3
M −

N
M sin x1 −

B
M x2 +

B
M cos x2 sin x3,

ẋ3 =
u(v(t−τ))

L − K
L x2 −

R
L x3 + sin(2t),

y = x1,

(4.4)

where f1(x) = 0, f2(x) = − N
M sin x1 −

B
M x2 +

B
M cos x2 sin x3, f3(x) = −K

L x2 −
R
L x3, d1(t) = 0.2 sin(t),

d2(t) = 0, d3(t) = sin(2t), τ = 1.5s.
The reference signal is set as yd = 0.5 sin(t) − cos(0.5t). The system input subject to actuator fault

described by u(v(t)) = λ(t, tλ)v + ur(t, tr) with λ(t, tλ) = 0.4 + 0.6 exp(−0.2t), and ur(t, tr) = cos2(x1)x2.
The following virtual control laws, real control law and adaption laws are considered:

αi = −kiei − ei−1 −
1

2a2
i

eiθ̂iS T
i (Zi)S i(Zi), i = 1, 2.

v = −k3e3 − e2 −
1

2a2
3

e3θ̂3S T
3 (Z3)S 3(Z3),

˙̂θi =
ri

2a2
i

e2
i S T

i (Zi)S i(Zi) − ϑiθ̂i, i = 1, 2, 3.

(4.5)

The receptive field center is defined as µi = [−1.5,−1,−0.5, 0, 0.5, 1, 1.5]T for i = 1, 2, 3, with a
Gaussian function width of ζ = 2. In the simulation, design parameters are determined through the
trial-and-error method: k1 = 8, k2 = 7, k3 = 8, a1 = a2 = a3 = 1, ϑ1 = 1, ϑ2 = 1, ϑ3 = 1, r1 = 1, r2 = 1,
r3 = 1. ICs for the simulation are set by using the trial-and-error method: [x1(0), x2(0), x3(0)]T =

[0.5, 0.5,−0.5]T and [θ̂1(0), θ̂2(0), θ̂3(0)] = [0, 0, 0].
The simulation outcomes are displayed in Figures 8–13. Figure 8 demonstrates the effective

tracking of the output y = x1 to the reference signal yd with bounded error. Further insights into
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the tracking error e1 are provided in Figure 9. Trajectories of x2 and x3 are depicted in Figure 10.
Figure 11 presents the bounded adaptive laws θ̂1, θ̂2, and θ̂3, while Figure 12 exhibits the control
input v and system input u.
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Figure 8. The trajectories of x1 and yd.

 

 

0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

 

 

x1 yd

0 10 20 30 40 50
-0.5

0

0.5

1

1.5

Time (sec)

 

 

e1

Figure 9. The trajectory of tracking error e1.
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Figure 10. Trajectories of system states x2 and x3.
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Figure 13. Tracking error e1.

In this study, the effectiveness of the proposed method was validated through a comparison with an
existing control approach [29] that utilizes auxiliary systems to minimize the effects of input delay. In
contrast to the established control method, the proposed approach integrates Pade approximation. The
comparison results, illustrated in Figure 13, clearly demonstrate a slight yet consistent improvement in
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tracking error under the proposed control method relative to the existing approach [29]. The simulation
results affirm that the proposed controller ensures the boundedness of all signals within the closed-
loop system. Figures 8–13 collectively highlight that, through judicious parameter adjustments, the
designed controller effectively constrains all closed-loop system signals. This validation demonstrates
the effectiveness of the proposed controller.

In this illustrative example, the error assessment criteria defined in Example 4.1 were utilized to
establish the effectiveness of the proposed method as compared to the existing approach [29].

The results, as depicted in Table 2, demonstrate a marginal improvement in the proposed control
scheme relative to the existing control method [29]. This enhancement provides compelling evidence
of the effectiveness of the proposed control approach.

Table 2. Comparison of the tracking performance for different error calculations.

Methods MSE RMSE MAE NMSE SSE BFR
Proposed method 0.0287 0.1695 1.5000 0.0590 119.8038 99.94%
Existing method in [29] 0.0417 0.2042 1.5000 0.0970 136.1849 99.90%

Remark 4.2. Comprehending the convergence dynamics of system elements heavily relies on the
examination of time constants and half-life analyses. In Figure 8, the relatively moderate pace at
which x1 converges is indicated by a time constant of 2.6835 seconds, and it took about 0.0504 seconds
to become half of its initial value. In Figure 9, the tracking error (e1) demonstrates a lengthier time
constant of 11.8472 seconds, suggesting a slower convergence rate with a half-life of approximately
0.1387 seconds. In Figure 11, θ̂1, θ̂2, and θ̂3 have time constants of 23.7414 seconds, 3.7447 seconds,
and 1.2005 seconds, respectively. Moreover, the consistently reported half-life of 0.0000 seconds for
each parameter underscores intricacies in their convergence dynamics that are not fully explicable by
the conventional half-life criterion associated with achieving half of the initial value.

5. Conclusions

The adaptive control problem for nonstrict-feedback nonlinear systems with actuator faults, input
delays, and external disturbances has been the primary focus of this study. The use of an RBFNN and
the Padé approximation, respectively, helped to resolve the difficulties brought forth by input delay
and unknown functions. An adaptive controller has been developed by applying the Lyapunov stability
theorem with the backstepping approach. The tracking error of the suggested controller converges to a
small neighborhood around the origin, guaranteeing the boundedness of all signals in the closed-loop
system. The efficacy of the suggested control method has been confirmed by the simulation results.
Future research will concentrate on nonlinear systems with sensors and actuator faults, including
providing true and estimated values of the nonlinear function to improve overall performance.
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