Research article Special Issues

An artificial neural network analysis of the thermal distribution of a fractional-order radial porous fin influenced by an inclined magnetic field

  • Fins and radial fins are essential elements in engineering applications, serving as critical components to optimize heat transfer and improve thermal management in a wide range of sectors. The thermal distribution within a radial porous fin was investigated in this study under steady-state conditions, with an emphasis on the impact of different factors. The introduction of an inclined magnetic field was investigated to assess the effects of convection and internal heat generation on the thermal behavior of the fin. The dimensionless form of the governing temperature equation was utilized to facilitate analysis. Numerical solutions were obtained through the implementation of the Hybrid Cuckoo Search Algorithm-based Artificial Neural Network (HCS-ANN). The Hartmann number (M) and the Convection-Conduction parameter (Nc) were utilized in the evaluation of heat transfer efficiency. Enhanced efficiency, as evidenced by decreased temperature and enhanced heat removal, was correlated with higher values of these parameters. Residual errors for both M and Nc were contained within a specified range of 106 to 1014, thereby offering a quantitative assessment of the model's accuracy. As a crucial instrument for assessing the performance and dependability of predictive models, the residual analysis highlighted the impact of fractional orders on temperature fluctuations. As the Hartmann number increased, the rate of heat transfer accelerated, demonstrating the magnetic field's inhibitory effect on convection heat transport, according to the study. The complex relationship among Nc, fractional order (BETA), and temperature was underscored, which motivated additional research to improve our comprehension of the intricate physical mechanisms involved. This study enhanced the overall understanding of thermal dynamics in radial porous fins, providing significant implications for a wide array of applications, including aerospace systems and heat exchangers.

    Citation: M. A. El-Shorbagy, Waseem, Mati ur Rahman, Hossam A. Nabwey, Shazia Habib. An artificial neural network analysis of the thermal distribution of a fractional-order radial porous fin influenced by an inclined magnetic field[J]. AIMS Mathematics, 2024, 9(6): 13659-13688. doi: 10.3934/math.2024667

    Related Papers:

    [1] Haiping Ren, Xue Hu . Estimation for inverse Weibull distribution under progressive type-Ⅱ censoring scheme. AIMS Mathematics, 2023, 8(10): 22808-22829. doi: 10.3934/math.20231162
    [2] Hassan Okasha, Mazen Nassar, Saeed A. Dobbah . E-Bayesian estimation of Burr Type XII model based on adaptive Type-Ⅱ progressive hybrid censored data. AIMS Mathematics, 2021, 6(4): 4173-4196. doi: 10.3934/math.2021247
    [3] Samah M. Ahmed, Abdelfattah Mustafa . Estimation of the coefficients of variation for inverse power Lomax distribution. AIMS Mathematics, 2024, 9(12): 33423-33441. doi: 10.3934/math.20241595
    [4] Mustafa M. Hasaballah, Oluwafemi Samson Balogun, M. E. Bakr . Frequentist and Bayesian approach for the generalized logistic lifetime model with applications to air-conditioning system failure times under joint progressive censoring data. AIMS Mathematics, 2024, 9(10): 29346-29369. doi: 10.3934/math.20241422
    [5] Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784
    [6] Tahani A. Abushal, Alaa H. Abdel-Hamid . Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system. AIMS Mathematics, 2022, 7(1): 425-454. doi: 10.3934/math.2022028
    [7] Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598
    [8] A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310
    [9] Naif Alotaibi, A. S. Al-Moisheer, Ibrahim Elbatal, Salem A. Alyami, Ahmed M. Gemeay, Ehab M. Almetwally . Bivariate step-stress accelerated life test for a new three-parameter model under progressive censored schemes with application in medical. AIMS Mathematics, 2024, 9(2): 3521-3558. doi: 10.3934/math.2024173
    [10] Rasha Abd El-Wahab Attwa, Shimaa Wasfy Sadk, Hassan M. Aljohani . Investigation the generalized extreme value under liner distribution parameters for progressive type-Ⅱ censoring by using optimization algorithms. AIMS Mathematics, 2024, 9(6): 15276-15302. doi: 10.3934/math.2024742
  • Fins and radial fins are essential elements in engineering applications, serving as critical components to optimize heat transfer and improve thermal management in a wide range of sectors. The thermal distribution within a radial porous fin was investigated in this study under steady-state conditions, with an emphasis on the impact of different factors. The introduction of an inclined magnetic field was investigated to assess the effects of convection and internal heat generation on the thermal behavior of the fin. The dimensionless form of the governing temperature equation was utilized to facilitate analysis. Numerical solutions were obtained through the implementation of the Hybrid Cuckoo Search Algorithm-based Artificial Neural Network (HCS-ANN). The Hartmann number (M) and the Convection-Conduction parameter (Nc) were utilized in the evaluation of heat transfer efficiency. Enhanced efficiency, as evidenced by decreased temperature and enhanced heat removal, was correlated with higher values of these parameters. Residual errors for both M and Nc were contained within a specified range of 106 to 1014, thereby offering a quantitative assessment of the model's accuracy. As a crucial instrument for assessing the performance and dependability of predictive models, the residual analysis highlighted the impact of fractional orders on temperature fluctuations. As the Hartmann number increased, the rate of heat transfer accelerated, demonstrating the magnetic field's inhibitory effect on convection heat transport, according to the study. The complex relationship among Nc, fractional order (BETA), and temperature was underscored, which motivated additional research to improve our comprehension of the intricate physical mechanisms involved. This study enhanced the overall understanding of thermal dynamics in radial porous fins, providing significant implications for a wide array of applications, including aerospace systems and heat exchangers.



    Statistical analysis and the modeling of lifetime data are essential across various applied disciplines such as insurance, finance, biomedical research, and engineering. Consequently, a multitude of lifetime distributions have been introduced in these domains. Particularly, the modeling of datasets constrained within the range of (0,1) has gained significant prominence in recent times. This approach has found widespread utility in addressing the survival and failure rates of products across diverse fields. As a result of its adaptability in handling probabilistic models of this nature, a plethora of unit distributions that are bounded within the interval (0,1) have emerged. Furthermore, industries including medical, actuarial, and finance sectors are increasingly recognizing the indispensable value of these types of distributions.

    Extensive efforts from statisticians have been directed toward comprehending the failure of components and units, particularly within the well-structured operating systems prevalent in industrial and mechanical engineering. Their investigation revolves around the observation of operating units until they encounter failure. Subsequently, the lifetimes of these units are recorded, followed by the application of statistical inference techniques to the accumulated data. This process culminates in the estimation of reliability and hazard functions for the entire system, leveraging the collected dataset. Despite these endeavors, situations arise where certain experimental units possess both high reliability and significant costs. In such cases, a practical necessity emerges to reduce the number of experimental units utilized as well as the duration of the lifetime experiments involving these units. To address this scenario, the progressive Type-Ⅱ censoring (PT-IIC) scheme comes into play. This scheme offers a way to achieve robust estimations through lifetime experiments while safeguarding some experimental units from encountering failure. The progressive Type-Ⅱ censoring scheme is frequently described as follows: Initially, the experimenter places n independent and identical units into the life measurement process. Upon the occurrence of the first failure, denoted as x(1), a random selection process removes R1 units from the remaining n1 surviving units. This process is reiterated for each subsequent failure event: At the time of the second failure, x(2), R2 units are randomly chosen for removal from the surviving units, now numbering nR12. This pattern continues until the m-th failure transpires at time xm, resulting in the extraction of Rm=nmm1i=1Ri surviving units from the test. The collective set of r values, denoted as R = (R1, R2, ..., Rm), characterizes the PT-IIC scheme. In contrast, Progressive Type-Ⅱ right censoring involves a predefined censoring scheme R before the experiment's commencement. Interestingly, Type-Ⅱ censoring can often be viewed as a specific instance of PT-IIC, where the scheme is represented as R = (0, 0, ..., nm), as documented in [1,2,3]. This experimental setup concludes at the mth failure, a predetermined event occurring at time tm, and the value of Rm is computed as nmm1i=1Ri, (Figure 1).

    Figure 1.  Schematic representation of the PT-IIC.

    Let x(1),x(2),...,x(m),1mn, be a PT-IIC sample observed from a lifetime test involving n units and R1,R2,...,Rm be the censoring scheme. The joint probability density function(PDF) of a PT-IIC sample is given by

    L(xi:m:n;θ,α)=Cmi=1f (xi:m:n))[(1F(xi:m:n))]Ri, (1.1)

    where C may be a constant defined as

    C=n (nR11)(nm1i=1(Ri+1)).

    See [1,3,4] for more details.

    The attention has been on the development of PT-IIC over the last two to three decades. One can consult sources such as [2,5,6,7] and others for insightful findings regarding this censoring scheme.

    A substitute for the maximum likelihood estimation (MLE) approach for deducing the parameters of continuous uni-variate distributions was introduced by [8], termed the maximum product of spacing (MPS) method. This approach was put forth as a means to retain many of the properties inherent in maximum likelihood by substituting the likelihood function with a product of spacing. This technique was subsequently extended to parameter estimation using censored samples by various researchers. For complete samples, sources like [9,10,11] delve into this method. When dealing with Type-Ⅰ and Type-Ⅱ censored samples, the works of [12,13] offer insights. The progressive Type-Ⅱ censoring scheme (PT-IIC) is explored in studies such as [14,15], while the adaptive progressive Type-Ⅱ scheme is examined in sources like [16,17,18]. The organization of this paper is as follows: In Section 2, the generalized power unit half-logistic geometric distribution will be presented. Section 3 introduces the classical estimation methods. Bayesian estimates for the unknown parameters are obtained in Section 4. In Section 5, the numerical computations are analyzed. In Section 6, we present an optimal progressive censoring scheme and compare it with various alternative censoring schemes. The conclusions drawn from the findings are summarized in Section 7.

    Nasiru et al. [19] introduced a new generalized power unit half-logistic geometric (GPUHLG)distribution. The random variable X is said to follow a GPUHLG distribution if its probability density function (pdf) is expressed as:

    f(x)=2αθxα1((θ2)xαθ)2,θ,α>0,0<x<1, (2.1)

    and the cumulative distribution function (cdf)

    F(x)=1θ(1xα)(2θ)xα+θ,θ,α>0,0<x<1. (2.2)

    Figure 2 shows the cdf and the pdf of the GPUHLG distribution at different values of θ and α.

    Figure 2.  The cdf and pdf of the GPUHLG distribution at different values of θ and α.

    Also, the survival and the hazard failure rate functions of the GPUHLG distribution are given respectively as

    S(x)=1F(x)=θ(1xα)(2θ)xα+θ,θ,α>0,0<x<1, (2.3)

    and

    H(x)=f(x)S(x)=2αxα1(xα1)((θ2)xαθ),θ,α>0,0<x<1. (2.4)

    Figure 3 shows the survival and the hazard rate functions of the GPUHLG distribution at different values of θ and α.

    Figure 3.  The survival and hazard rate functions of the GPUHLG distribution at different values of θ and α.

    In this section, the techniques of maximum likelihood estimation (MLEs) and maximum product of spacing estimation (MPSs) are employed to derive both point and interval estimators for the model parameter. The construction of interval estimators leverages the asymptotic characteristics of the MLEs and MPSs.

    Consider a PT-IIC sample of size m, denoted by x=x(i), where i=1,,m. This sample is acquired using the progressive censoring scheme Si from the GPUHLG distribution, which is defined by the probability density function (pdf) and cumulative distribution function (cdf) shown in Eqs (2) and (3), respectively. By excluding the constant factor, the likelihood function of the GPUHLG distribution, accounting for the existence of PT-IIC, can be derived from Eqs (2), (3), and (1) as demonstrated below:

    L(2αθ2)mmi=1xα1(i)((2θ)xα(i)+θ)2(1xα(i)(2θ)xα(i)+θ)Ri. (3.1)

    The log-likelihood function is given by

    l=log(L)mlog(2α)+2mlog(θ)+mi=1log(xα1(i))2mi=1log((2θ)xα(i)+θ)+mi=1Ri(log(1xα(i))log((2θ)xα(i)+θ)). (3.2)

    The derivatives of the log-likelihood function with respect to the parameters θ and α are presented as follows:

    lθ=2mθ2mi=11xα(i)(2θ)xα(i)+θ+mi=1Ri(1xα(i))(2θ)xα(i)+θ, (3.3)
    lα=mα+mi=1log(x(i))2mi=1(2θ)xα(i)log(x(i))(2θ)xα(i)+θmi=1Ri(xα(i)log(x(i))1xα(i)+(2θ)xα(i)log(x(i))(2θ)xα(i)+θ). (3.4)

    Equations (3.3) and (3.4) do not possess a readily available closed-form solution when equated to zero. Consequently, numerical methods using the Newton-Raphson algorithm implemented in the R programming language are employed to obtain solutions.

    The Fisher information matrix, which is required for obtaining the MLE and the corresponding asymptotic confidence intervals of the parameters, requires the second partial derivatives of the log-likelihood function with respect to the parameters. The Fisher matrix F is given by

    F=[2Lθ22Lθα2Lαθ2Lα2.], (3.5)

    These matrices should be positive definite at the MLE estimates of the parameters. The 2nd partial derivatives of the log-likelihood function, which are needed for the Fisher information matrix, are given by

    2lθ2=2mθ2+2mi=1(1xα(i))2((2θ)xα(i)+θ)2+mi=1(Ri(1xα(i))2((2θ)xα(i)+θ)2, (3.6)
    2lα2=mα2mi=1((2θ)(log(x(i)))2xα(i)(2θ)xα(i)+θ(2θ)2(log(x(i)))2x2α(i)((2θ)xα(i)+θ)2)+mi=1Ri(2log(x(i))x2α(i)(1xα(i))22log(x(i))xα(i)1xα(i)2(2θ)log(x(i))xα(i)(2θ)xα(i)+θ+α(2θ)2(log(x(i)))2x2α(i)((2θ)xα(i)+θ)2), (3.7)
    2lθα=2mθ2mi=11xα(i)(2θ)xα(i)+θmi=1Ri(1xα(i))(2θ)xα(i)+θ, (3.8)
    2lαθ=mα+mi=1log(x(i))2mi=1(2θ)log(x(i))xα(i)(2θ)xα(i)+θmi=1Ri(log(x(i))xα(i)1xα(i)+(2θ)log(x(i))xα(i)(2θ)xα(i)+θ). (3.9)

    As was discussed above, the MLEs of the unknown parameters θ and α are not derived in closed forms. Therefore, the sampling distributions of the MLEs cannot be obtained analytically. Alternatively, we can compute the asymptotic confidence intervals of these parameters using one of the properties of the MLEs, which states that

    (ˆθ,ˆα)N2((θ,α),ˆF1) as n,

    where ˆF1 is the inverse of F evaluated at the MLEs of the parameters, respectively.

    The preceding section underscored the challenges associated with calculating second-order derivatives for constructing asymptotic confidence intervals (ACIs) for the model's unknown parameters. Consequently, we turn our attention to employing bootstrapping techniques. Specifically, we consider the percentile bootstrap approach (Boot-p), as well as the bootstrap-t approach proposed by Efron [7], and the bootstrap-t method outlined by Hall [20].

    (1) Utilizing the original data x=x(1),x(2),...,x(m), maximize Eqs (8) and (9) to obtain ˆθ and ˆα, respectively.

    (2) Generate the PT-IIC sample x=x(1),x(2),...,x(m) based on the pre-specified PT-IIC scheme (R1,R2,...,Rm) from the GPUHLG distribution with parameters ˆθ and ˆα, using the algorithm detailed in Balakrishnan and Sandhu [4] and [3].

    (3) Obtain the maximum likelihood estimates based on the bootstrap sample, denoting this estimate as ˆψ, where in our case ψ could be θ and α.

    (4) Repeat Steps (2) and (3) for a total of N bootstrap iterations, obtaining ˆψ1,ˆψ2,...,ˆψN boot, where ˆψi=(ˆθi,ˆαi) and i=1,2,3,...,N boot.

    (5) Arrange ˆψi in ascending order to obtain ˆψ(1),ˆψ(2),...,ˆψ(N boot).

    Consider G1(z)=P(ˆψz) to represent the cumulative distribution function of ˆψ. Introduce ˆψbootp=G11(z) for a given value of z. The estimated bootstrap-p 100(1γ) confidence interval of ˆψ is then expressed as:

    [ˆψbootp(γ2),ˆψbootp(1γ2)]. (3.10)

    (1) The same as the parametric Boot-p.

    (2) The same as the parametric Boot-p.

    (3) The same as the parametric Boot-p.

    (4) Utilizing the asymptotic variance-covariance matrix, calculate the matrix I1(θ,α).

    (5) Calculate the statistic Tψ, defined as follows:

    Tψ=(ˆψˆψ)^var(ˆψ).

    (6) Repeat Steps 25, N-Boot times and obtain Tψ1,Tψ2,...,TψN boot.

    (7) Arrange the values Tψ1,Tψ2,...,TψN boot in ascending order to derive the ordered sequences Tψ(1),Tψ(2),...,Tψ(N boot).

    Let G2(z)=P(Tz) be the cumulative distribution function of T for given z. Define ˆψboott=ˆψ+G11(z)^var(ˆψ).

    Then, the approximate bootstrap-t 100(1γ) CI of ˆψ=(ˆθ,ˆα), is given by

    [ˆψboott(γ2),ˆψbootp(1γ2)]. (3.11)

    A reliable alternative to the maximum likelihood approach is the maximum product spacing (MPS) method, which provides an approximation to the Kullback-Leibler information measure.

    Examine a PT-IIC sample of size m, denoted as x=x(i), where i ranges from 1 to m. This sample is gathered using the progressive censoring scheme Si from the GPUHLG population, described by the probability density function (pdf) and cumulative distribution function (cdf) outlined in Eqs (2) and (3) respectively. The probability spacing (PS) function, excluding the constant component, can be formulated within this framework by utilizing Eqs (2) and (3) as demonstrated below:

    Gs(θ,α|data)=m+1i=1(F(x(i))F(x(i1)))mi=1(1F(x(i)))Ri=m+1i=1(θ(1xα(i1))(2θ)xα(i1)+θθ(1xα(i))(2θ)xα(i)+θ)mi=1(θ(1xα(i))(2θ)xα(i)+θ)Ri, (3.12)

    and g(θ,α|data)=log(Gs(θ,α|data)) can be obtained as

    g(θ,α|data)=m+1i=1log(θ(1xα(i1))((2θ)xα(i))θ(1xα(i))((2θ)xα(i1))))m+1i=1log((2θ)xα(i1)+θ)m+1i=1log((2θ)xα(i)+θ)+m+1i=1Rilog(θ(1xα(i)))m+1i=1Rilog((2θ)xα(i)+θ). (3.13)

    Upon deriving the first derivative of the function g(θ,α|data) with respect to θ and α, we obtain:

    g(θ,α|data)θ=mi=1Riθm+1i=11xα(i1)(2θ)xα(i1)+θm+1i=11xα(i)(2θ)xα(i)+θmi=1Ri(1xα(i))(2θ)xα(i)+θ+m+1i=1(1xα(i1))((2θ)xα(i)+θ)(1xα(i1))((2θ)xα(i1)+θ)θ(1xα(i1))((2θ)xα(i)+θ)θ(1xα(i))((2θ)xα(i1)+θ), (3.14)
    g(θ,α|data)α=m+1i=1θ(2θ)xα(i)(1xα(i1))log(x(i))+θxα(i)log(x(i))((2θ)xα(i1)+θ)θ(1xα(i1))((2θ)xα(i)+θ)θ(1xα(i))((2θ)xα(i1)+θ)m+1i=1θ(2θ)xα(i1)(1xα(i))log(x(i1))+θxα(i1)log(x(i1))((2θ)xα(i)+θ)θ(1xα(i1))((2θ)xα(i)+θ)θ(1xα(i))((2θ)xα(i1)+θ)m+1i=1(2θ)xα(i1)log(x(i1))(2θ)xα(i1)+θmi=1Rixα(i)log(x(i))1xα(i)m+1i=1(2θ)xα(i)log(x(i))(2θ)xα(i)+θmi=1(2θ)Rixα(i)log(x(i))(2θ)xα(i)+θ. (3.15)

    Equations (3.14) and (3.15) lack closed-form analytical solutions when equated to zero. Consequently, numerical methods are employed to obtain solutions.

    Within this section, the Bayesian estimation (BE) technique is employed for the estimation of the parameters θ and α. These parameters are presumed to be independent and adhere to a gamma prior distribution characterized by parameters a and b.

    The gamma prior density function takes the following shape:

    π(u)=baΓ(a)ua1eub,u,a,b>0. (4.1)

    Subsequently, the joint prior density of θ and α can be expressed as follows:

    π(θ,α)=ni=1π(θ)π(α)(θα)a1e(θ+α)b. (4.2)

    The joint posterior distribution function according to the Bayesian procedure is given by

    π(θ,α|x_)=π(θ,α)L(x_)00π(θ,α)L(x_)dθdαπ(θ,α)L(x_). (4.3)

    Substituting from Eqs (3.1) and (4.2) into Eq (4.3), we get

    π(θ,α|x_)θa+2m1αa+m1e(θ+α)b)mi=1xα1(i)((2θ)xα(i)+θ)2(1xα(i)(2θ)xα(i)+θ)Ri. (4.4)

    The Bayesian estimator for a given function, denoted as l(ϕ), with respect to the squared error (SE) loss function, is defined as:

    ˆϕSE=E[l(ϕ)|x]=ϕl(ϕ)π(ϕ|x)dϕ. (4.5)

    The squared error (SE) loss function is a type of asymmetric loss function that assigns equal importance to both underestimation and overestimation. However, in various real-world scenarios, the gravity of underestimation might differ from that of overestimation, and the opposite could also be true. When dealing with such circumstances, a possible substitute for the SE loss function is the LINEX loss, characterized by:

    (l(ϕ),ˆl(ϕ))=e{ˆl(ϕ)l(ϕ)}v(ˆl(ϕ)l(ϕ))1.

    In this context, when v>0, it signifies a greater significance of overestimation compared to underestimation, whereas for v<0, the opposite holds true. As v approaches zero, the loss function aligns with the standard squared error (SE) form. For a deeper understanding of this concept, additional information can be found in [21,22]. The Bayesian estimator (BE) for l(ϕ) under this loss function can be determined as follows:

    ˆϕLN=E[e{vl(ϕ)}|x]=1vlog[ϕe{vl(ϕ)}π(ϕ|x)dϕ]. (4.6)

    Observing Eqs (4.5) and (4.6), it becomes apparent that the resulting estimates cannot be transformed into concise analytical forms. To manage this, the Markov chain Monte Carlo(MCMC)method, as outlined in [23], is employed to numerically summarize the posterior distribution. This approach avoids the need for calculating the normalization constant and is executed using the R programming language, as described in [7]. Hence, our next step involves implementing the MCMC methodology and generating posterior samples via the Metropolis-Hastings algorithm. This enables us to acquire the desired Bayesian estimators (BEs).

    Markov chain Monte Carlo (MCMC)methods constitute a versatile simulation approach for obtaining samples from posterior distributions and calculating relevant posterior values. In fact, the MCMC samples can effectively encapsulate the full range of uncertainty regarding the parameter ϕ. By utilizing a kernel estimation technique on the posterior distribution, a comprehensive understanding can be obtained. For a more comprehensive exploration of MCMC principles, refer to sources such as [5,23,24,25,26,27].

    Numerous methods exist for introducing random noise to create proposals, and a variety of approaches are available for the acceptance and rejection process. Techniques like Gibbs sampling and the Metropolis-Hastings algorithm are among the options for this purpose.

    To implement the Metropolis-Hastings (MH) algorithm for the GPUHLG distribution, certain elements must be established: a proposal distribution and initial values for the unknown parameters θ and α. For the proposal distribution, we opt for a bivariate normal distribution, denoted as q((θ,α)|(θ,α))N2((θ,α),Sθ,α), wherein Sθ,α signifies the variance-covariance matrix. It is important to note that we must avoid generating negative observations, which are considered unacceptable. Regarding initial values, we employ the Maximum Likelihood Estimators (MLE) for θ and α, yielding (θ(0),α(0))=(ˆθ,ˆα). The selection of Sθ,α is based on the asymptotic variance-covariance matrix F1(ˆθ,ˆα), with F(.) representing the Fisher information matrix. It is worth noting that the choice of Sθ,α holds significance in the MH algorithm, impacting the acceptance rate.

    In this context, the sequential stages of the MH algorithm for drawing a sample from the posterior density, as indicated in Eq (22), unfold in the following manner:

    Step 1. Initialize the value of η as η(0)=(ˆθ,ˆα).

    Step 2. For i=1,2,,M, iterate through the following process:

    (1) Set η=η(i1).

    (2) Generate a fresh candidate parameter value δ from the bivariate normal distribution N2(logη,Sθ,α).

    (3) Set η=exp(δ).

    (4) Compute β using the formula β=π(η|x)π(η|x), where π() represents the posterior density as defined in Eq (22).

    (5) Generate a sample u from the uniform U(0,1); distribution.

    (6) Accept or reject the new candidate η

    {Ifuβsetη(i)=ηotherwisesetη(i)=η.

    Ultimately, after obtaining a set of random samples of size M from the posterior density, it is common practice to discard a portion of the initial samples (burn-in), retaining the remaining samples for further analysis. Specifically, the Bayesian estimators (BEs) of the parameters θ and α using the squared error (SE) loss function, as outlined in Eq (4.5), can be computed as

    ˆθSE=1MlBMl=lBθ(l),ˆαSE=1MlBMl=lBα(l). (4.7)

    Moreover, the Bayesian estimators (BEs) for the parameters θ and α, employing the LINEX loss function, as provided in Eq (4.6), can be expressed as follows:

    ˆθLN=1vlog[1MlBMi=lBe{vθ(i)}]ˆαLN=1vlog[1MlBMi=lBe{vα(i)}]. (4.8)

    Here, lB denotes the count of burn-in samples.

    The elicitation of the hyper-parameters will depend on informative priors. These informative priors are derived from the MLEs for (θ,α) by equating the mean and variance of (ˆθj,ˆαj) with those of the specified priors (Gamma priors). Here, j=1,2,,k, and k corresponds to the number of available samples from the GPUHLG distribution (Dey et al. [28]). By equating the moments of (ˆθj,ˆαj) with the moments of the gamma priors, the following equations are derived:

    1kkj=1ˆθj=a1b1,1k1kj=1(ˆθj1kkj=1ˆθj)2=a1b21,1kkj=1ˆαj=a2b2and1k1kj=1(ˆαj1kkj=1ˆαj)2=a2b22.

    By solving the aforementioned equations, the estimated hyper-parameters can be expressed as follows:

    a1=(1kkj=1ˆθj)21k1kj=1(ˆθj1kkj=1ˆθj)2,b1=1kkj=1ˆθj1k1kj=1(ˆθj1kkj=1ˆθj)2a2=(1kkj=1ˆαj)21k1kj=1(ˆαj1kkj=1ˆαj)2,b2=1kkj=1ˆαj1k1kj=1(ˆαj1kkj=1ˆαj)2. (4.9)

    We construct the highest posterior density (HPD) intervals for the unobservable parameters α and θ of the GPUHLG distribution within the context of the PT-IIC. These intervals are established using the samples acquired through the aforementioned MH approach from the previous section [29]. In the subsequent case study, let α(δ) and θ(δ) represent the δ-th quantiles of α and θ, respectively. In other words,

    (α(δ),θ(δ))=inf{(α,θ):Π((α,θ)|z)δ}.

    Here, 0<δ<1, and Π() represents the posterior distribution of α and θ. Importantly, it is worth noting that for a specific set of α and θ, an effective estimator derived from simulating π((α,θ)|z) can be computed as:

    Π((α,θ)|z)=1MlBMi=lBI(α,θ)(α,θ).

    Here, I(α,θ)(α,θ) is the indicator function. The proper estimate is then determined as

    ˆΠ((α,θ)|z)={0if (α,θ)<(α(lB),θ(lB))ij=lBωjif (α(i),θ(i))<(α,θ)<(α(i+1),θ(i+1))1if (α,θ)>(α(M),θ(M))

    where ωj=1MlB and (α(j),θ(j)) are the ordered values of (αj,θj). Now, for i=lB,,M, (α(δ),θ(δ)) may be estimated by

    (˜α(δ),˜θ(δ))={(α(lB),θ(lB))ifδ=0(α(i),θ(i))if i1j=lBωj<δ<ij=lBωj.

    Furthermore, let us determine a 100(1δ) HPD credible interval for α and θ:

    HPDαj=(˜α(jM),˜α(j+(1δ)MM))&HPDλj=(˜θ(jM),˜θ(j+(1δ)MM))

    for j=lB,,[δM], where [a] represents indicates the largest integer a. We need to choose HPDj from one of many HPDjs with the narrowest width.

    The aim of this section is to assess and compare the efficiencies of the different estimation approaches discussed in the previous sections. To achieve this, a simulation study is conducted to observe the performances of the proposed methods and to gauge the statistical prowesses of the estimators within the framework of a PT-IIC scheme. Furthermore, a flood dataset is analyzed to offer a practical illustration. All calculations were executed using the R programming language.

    In this subsection, a Monte Carlo simulation study is carried out to evaluate the performance of distinct estimation methods – namely, MLE, MPS, and BE – within the framework of the PT-IIC scheme applied to the GPUHLG distribution. We generate 1000 sets of random data from the GPUHLG distribution under the PT-IIC, employing parameters θ=0.5 and α=1.5. The configuration of the PT-IIC scheme is established through predetermined values of n and m, alongside various patterns for censoring items Ri, where i=1,2,,m, as detailed in Table 1. These patterns can be classified into four distinct cases.

    Table 1.  Patterns of item removal for varying values of n and m.
    n m Censoring Scheme (R1,R2,,Rm) Scheme
    20 10 (10,09) R1
    (09,10) R2
    (04,5,5,04) R3
    (110) R4
    15 (5,014) R5
    (014,5) R6
    (07,2,3,07) R7
    (15,010) R8
    30 20 (10,019) R9
    (019,10) R10
    (09,5,5,09) R11
    (110,010) R12
    25 (5,024) R13
    (024,5) R14
    (012,5,012) R15
    (15,020) R16
    40 20 (20,019) R17
    (019,20) R18
    (09,10,10,09) R19
    (120) R20
    30 (10,029) R21
    (029,10) R22
    (014,5,5,014) R23
    (110,020) R24
    60 40 (20,039) R25
    (039,20) R26
    (019,10,10,019) R27
    (120,020) R28
    50 (10,049) R29
    (049,10) R30
    (024,5,5,024) R31
    (110,030) R32

     | Show Table
    DownLoad: CSV

    ● In the first pattern, the removal of items (nm) takes place during life testing, coinciding with the occurrence of the first failure item. This scenario is represented by patterns such as R1,R5,,R29.

    ● Conversely, the second pattern involves the removal of items occurring with the last m failure items, and this is exemplified by patterns like R2,R6,,R30.

    ● Moving to the third pattern, the removal of items happens at the median of the m items, as demonstrated by patterns R3,R7,,R31.

    ● Lastly, the final pattern arises when equal items are removed, whenever possible, at each m stage. This pattern is characterized by representations such as R4,R8,,R32.

    Steps of the Monte Carlo simulation:

    Step 1: Generate m sets of PT-IIC random data points from the GPUHLG(θ,α) distribution using the algorithm proposed by [3]. Use the removal pattern of items from Table 1.

    Step 2: Obtain MLE and MPS estimates for the parameters θ and α. Additionally, calculate the variance-covariance matrix of MLEs.

    Step 3: Compute confidence interval estimates: Asy-CI, Boot-p, and Boot-t.

    Step 4: Compute BEs using the MH algorithm as follows:

    (1) Consider two scenarios for prior distributions. The first scenario involves an informative prior (INF), wherein hyper-parameter values are computed using Eq (4.9). Specifically, we generate 1000 complete samples, each consisting of 60 data points, from a GPUHLG(θ=0.5,α=1.5) distribution as past samples and compute their MLEs (ˆθ,ˆα). Subsequently, by utilizing Eq (4.9), we can determine the hyper-parameter values as follows: a1=6.52, b1=18.22, a2=49.67, and b2=27.50.

    (2) The second scenario involves a non-informative prior (Non-INF), where hyper-parameter values are set to a1=b1=a2=b2=0. This leads to the prior distributions π(θ)=1θ and π(α)=1α.

    (3) Generate 10,000 samples of α and θ for both INF and Non-INF prior cases from the posterior density using MCMC and utilizing the MH algorithm. Use the initial MLEs and their variance-covariance matrix, along with the given PT-IIC data x=(x(1),x(2),,x(m)).

    (4) The initial 2,000 samples are discarded as burn-in from the overall set of 10,000 samples generated from the posterior density.

    (5) Compute BEs of α and θ using various loss functions: SE and LINEX (with v=0.5(LN1) and v=0.5(LN2)), as defined by Eqs (4.7) and (4.8).

    (6) Finally, calculate the HPD interval using the posterior samples.

    Step 5: Repeat Steps 1–4 a total of 1,000 times and save all the estimates.

    Step 6: Calculate statistical metrics for point estimates: mean (Avg.) estimate and root mean square error (RMSE) estimate. These calculations can be carried out using the following formulas:

    Avg.(ϕ)=110001000l=1ˆϕl,RMSE(ϕ)=110001000l=1(ˆϕlϕ)2.

    In this context, ϕ represents the parameter, while ˆϕ denotes the estimated value of that parameter.

    Step 7: Compute statistical performance measures for interval estimates: average interval length (AIL) and coverage probability (CP) in percentage.

    To provide point estimations, we present the results of Avg. and RMSE estimates for various PT-IIC schemes in Tables 2 and 3, corresponding to θ=0.5 and α=1.5, respectively. In terms of interval estimation, Tables 4.a and 4.b display the outcomes for AILs and CPs for θ=0.5 and α=1.5, respectively.

    Table 2.  Average estimate values and MSE under different PT-IIC schemes at θ=0.5.
    n m Scheme Classical BE: Non-INF BE: INF
    MLE MPS SE LN1 LN2 SE LN1 LN2
    20 10 R1 Avg. 0.4765 0.2380 0.9846 0.9935 0.4801 0.4454 0.4502 0.4407
    RMSE 0.4441 0.3613 2.0388 2.4955 0.5909 0.1304 0.1298 0.1311
    R2 Avg. 0.4091 0.3442 0.7972 0.8928 0.4799 0.4641 0.4686 0.4597
    RMSE 0.3798 0.3491 1.6437 2.2714 0.6062 0.1487 0.1493 0.1483
    R3 Avg. 0.4332 0.2202 0.9129 0.7361 0.4940 0.4576 0.4622 0.4531
    RMSE 0.4277 0.3734 1.8939 2.0204 0.6852 0.1508 0.1512 0.1505
    R4 Avg. 0.4361 0.2869 0.8717 1.0763 0.4961 0.4662 0.4709 0.4617
    RMSE 0.4019 0.3500 1.7581 2.5829 0.7831 0.1327 0.1331 0.1325
    15 R5 Avg. 0.4591 0.2873 0.7439 1.1386 0.5258 0.4764 0.4813 0.4717
    RMSE 0.3731 0.3332 1.3680 2.5534 0.6915 0.1004 0.1006 0.1005
    R6 Avg. 0.4389 0.3453 0.6972 1.0921 0.4856 0.4886 0.4933 0.4840
    RMSE 0.3344 0.3099 1.1001 2.4799 0.4603 0.1070 0.1078 0.1063
    R7 Avg. 0.4426 0.2826 0.7559 1.2912 0.4837 0.4850 0.4897 0.4803
    RMSE 0.3620 0.3343 1.3448 2.8913 0.4890 0.1117 0.1124 0.1111
    R8 Avg. 0.4538 0.2880 0.8059 1.1692 0.4735 0.4824 0.4873 0.4778
    RMSE 0.3740 0.3347 1.5222 2.6285 0.4553 0.1016 0.1021 0.1014
    30 20 R9 Avg. 0.4485 0.3078 0.5471 0.9019 0.4331 0.5034 0.5082 0.4986
    RMSE 0.2936 0.2849 0.6704 1.7669 0.2984 0.0824 0.0838 0.0814
    R10 Avg. 0.4323 0.3668 0.5274 0.8331 0.4448 0.5238 0.5285 0.5193
    RMSE 0.2648 0.2602 0.6618 1.7338 0.3150 0.0926 0.0948 0.0906
    R11 Avg. 0.4362 0.3034 0.5479 0.9766 0.4466 0.5200 0.5248 0.5154
    RMSE 0.2899 0.2892 0.6457 2.0462 0.4408 0.0969 0.0991 0.0949
    R12 Avg. 0.4412 0.3081 0.5295 1.0421 0.4448 0.5151 0.5200 0.5104
    RMSE 0.2929 0.2870 0.6151 2.1183 0.4526 0.0904 0.0923 0.0887
    25 R13 Avg. 0.4434 0.3232 0.5299 0.8705 0.4386 0.5121 0.5167 0.5077
    RMSE 0.2865 0.2784 0.6843 1.6652 0.2974 0.0737 0.0755 0.0722
    R14 Avg. 0.4369 0.3555 0.4885 0.7234 0.4391 0.5210 0.5255 0.5167
    RMSE 0.2657 0.2574 0.3718 1.3427 0.2772 0.0770 0.0792 0.0751
    R15 Avg. 0.4385 0.3222 0.5079 0.9652 0.4424 0.5209 0.5255 0.5165
    RMSE 0.2847 0.2789 0.4529 2.0063 0.3065 0.0795 0.0817 0.0775
    R16 Avg. 0.4422 0.3250 0.5143 0.8986 0.4416 0.5145 0.5190 0.5100
    RMSE 0.2873 0.2784 0.5201 1.7517 0.3040 0.0754 0.0772 0.0738
    40 20 R17 Avg. 0.4543 0.3089 0.4947 0.7791 0.4277 0.4994 0.5041 0.4948
    RMSE 0.2894 0.2816 0.4169 1.4385 0.2869 0.0782 0.0793 0.0775
    R18 Avg. 0.4285 0.3771 0.4773 0.7596 0.4307 0.5296 0.5340 0.5252
    RMSE 0.2650 0.2618 0.3458 1.4479 0.2763 0.1024 0.1047 0.1002
    R19 Avg. 0.4374 0.3010 0.4890 0.8803 0.4314 0.5250 0.5297 0.5205
    RMSE 0.2922 0.2920 0.4109 1.7176 0.3209 0.1014 0.1037 0.0994
    R20 Avg. 0.4375 0.3392 0.4915 0.6960 0.4331 0.5245 0.5291 0.5200
    RMSE 0.2719 0.2687 0.5183 1.1427 0.3153 0.0941 0.0963 0.0921
    30 R21 Avg. 0.4398 0.3361 0.4652 0.5819 0.4318 0.5220 0.5264 0.5177
    RMSE 0.2580 0.2581 0.3050 0.6697 0.2642 0.0755 0.0778 0.0735
    R22 Avg. 0.4334 0.3748 0.4622 0.5112 0.4345 0.5368 0.5411 0.5326
    RMSE 0.2388 0.2363 0.2776 0.3785 0.2462 0.0816 0.0844 0.0791
    R23 Avg. 0.4348 0.3350 0.4699 0.6156 0.4344 0.5354 0.5398 0.5310
    RMSE 0.2577 0.2597 0.3094 1.0343 0.2655 0.0852 0.0879 0.0826
    R24 Avg. 0.4376 0.3377 0.4631 0.5999 0.4298 0.5294 0.5339 0.5251
    RMSE 0.2596 0.2588 0.3035 0.8299 0.2660 0.0793 0.0819 0.0769
    60 40 R25 Avg. 0.4405 0.3549 0.4486 0.4854 0.4293 0.5313 0.5355 0.5272
    RMSE 0.2210 0.2267 0.2443 0.3704 0.2267 0.0717 0.0743 0.0693
    R26 Avg. 0.4368 0.3943 0.4521 0.4731 0.4369 0.5492 0.5532 0.5452
    RMSE 0.2004 0.2023 0.2185 0.2436 0.2081 0.0818 0.0849 0.0790
    R27 Avg. 0.4372 0.3552 0.4514 0.4806 0.4321 0.5487 0.5529 0.5446
    RMSE 0.2200 0.2282 0.2433 0.2829 0.2281 0.0827 0.0859 0.0797
    R28 Avg. 0.4383 0.3572 0.4509 0.4824 0.4314 0.5426 0.5469 0.5384
    RMSE 0.2205 0.2268 0.2436 0.3004 0.2270 0.0782 0.0813 0.0754
    50 R29 Avg. 0.4323 0.3614 0.4420 0.4608 0.4274 0.5402 0.5442 0.5363
    RMSE 0.1918 0.2080 0.2080 0.2308 0.1989 0.0768 0.0796 0.0742
    R30 Avg. 0.4316 0.3832 0.4419 0.4564 0.4298 0.5460 0.5498 0.5422
    RMSE 0.1816 0.1913 0.1930 0.2031 0.1871 0.0800 0.0828 0.0773
    R31 Avg. 0.4312 0.3624 0.4432 0.4611 0.4290 0.5475 0.5516 0.5436
    RMSE 0.1908 0.2071 0.2063 0.2214 0.1984 0.0814 0.0844 0.0786
    R32 Avg. 0.4321 0.3635 0.4414 0.4617 0.4269 0.5419 0.5460 0.5379
    RMSE 0.1920 0.2073 0.2087 0.2512 0.1997 0.0776 0.0805 0.0749

     | Show Table
    DownLoad: CSV
    Table 3.  Average estimate values and MSE under different PT-IIC schemes at α=1.5.
    n m Scheme Classical BE: Non-INF BE: INF
    MLE MPS SE LN1 LN2 SE LN1 LN2
    20 10 R1 Avg. 1.7721 2.3772 1.9696 2.0637 1.8813 1.1786 1.1833 1.1741
    RMSE 0.6475 1.1949 0.8568 0.9146 0.8111 0.3598 0.3559 0.3636
    R2 Avg. 1.8662 2.0620 1.9848 2.0582 1.9140 1.2272 1.2320 1.2225
    RMSE 0.7424 0.8617 0.8921 0.9282 0.8637 0.4044 0.4015 0.4073
    R3 Avg. 1.8394 2.3798 1.9934 2.0731 1.9169 1.2184 1.2232 1.2136
    RMSE 0.7082 1.2040 0.8852 0.9245 0.8546 0.3489 0.3456 0.3521
    R4 Avg. 1.8076 2.1490 1.9565 2.0315 1.8842 1.1983 1.2030 1.1936
    RMSE 0.6521 0.9279 0.8278 0.8680 0.7953 0.3423 0.3385 0.3461
    15 R5 Avg. 1.7452 2.1438 1.8621 1.9333 1.7937 1.1700 1.1747 1.1655
    RMSE 0.5699 0.9062 0.7314 0.7689 0.7015 0.3429 0.3386 0.3472
    R6 Avg. 1.7552 1.9731 1.8415 1.9030 1.7818 1.1819 1.1866 1.1773
    RMSE 0.5667 0.7302 0.6866 0.7179 0.6613 0.3337 0.3295 0.3380
    R7 Avg. 1.7670 2.1367 1.8801 1.9459 1.8164 1.1849 1.1896 1.1803
    RMSE 0.5879 0.8991 0.7258 0.7592 0.6988 0.3332 0.3290 0.3374
    R8 Avg. 1.7505 2.1170 1.8693 1.9356 1.8046 1.1769 1.1815 1.1723
    RMSE 0.5712 0.8722 0.7035 0.7389 0.6750 0.3377 0.3334 0.3420
    30 20 R9 Avg. 1.6654 1.9584 1.7773 1.8248 1.7310 1.1903 1.1947 1.1860
    RMSE 0.4334 0.6564 0.5360 0.5649 0.5110 0.3170 0.3128 0.3211
    R10 Avg. 1.6761 1.8228 1.7498 1.7903 1.7102 1.2080 1.2123 1.2037
    RMSE 0.4335 0.5349 0.5112 0.5334 0.4921 0.3042 0.3001 0.3082
    R11 Avg. 1.6814 1.9459 1.7806 1.8243 1.7377 1.2106 1.2150 1.2063
    RMSE 0.4442 0.6433 0.5415 0.5649 0.5217 0.3022 0.2982 0.3063
    R12 Avg. 1.6722 1.9322 1.7805 1.8245 1.7373 1.2053 1.2097 1.2010
    RMSE 0.4343 0.6262 0.5381 0.5625 0.5173 0.3051 0.3010 0.3092
    30 25 R13 Avg. 1.6717 1.9147 1.7567 1.7981 1.7161 1.1986 1.2029 1.1943
    RMSE 0.4221 0.5972 0.5087 0.5337 0.4871 0.3065 0.3023 0.3106
    R14 Avg. 1.6674 1.8303 1.7325 1.7695 1.6961 1.2062 1.2105 1.2019
    RMSE 0.4060 0.5111 0.4729 0.4943 0.4542 0.2997 0.2956 0.3038
    R15 Avg. 1.6760 1.9057 1.7580 1.7979 1.7188 1.2070 1.2113 1.2027
    RMSE 0.4222 0.5868 0.5152 0.5376 0.4955 0.2990 0.2949 0.3031
    R16 Avg. 1.6708 1.9006 1.7512 1.7917 1.7115 1.2036 1.2080 1.1993
    RMSE 0.4174 0.5804 0.5006 0.5241 0.4802 0.3018 0.2976 0.3059
    40 20 R17 Avg. 1.6423 1.9368 1.7615 1.8045 1.7198 1.2053 1.2095 1.2011
    RMSE 0.4002 0.6245 0.5011 0.5285 0.4772 0.3026 0.2986 0.3066
    R18 Avg. 1.6707 1.7935 1.7531 1.7878 1.7191 1.2422 1.2464 1.2380
    RMSE 0.4195 0.5051 0.4935 0.5120 0.4775 0.2803 0.2766 0.2840
    R19 Avg. 1.6661 1.9161 1.7755 1.8133 1.7383 1.2417 1.2459 1.2375
    RMSE 0.4163 0.6018 0.5165 0.5354 0.5006 0.2777 0.2740 0.2815
    R20 Avg. 1.6556 1.8383 1.7492 1.7841 1.7149 1.2351 1.2393 1.2310
    RMSE 0.4008 0.5261 0.4867 0.5055 0.4703 0.2806 0.2768 0.2844
    30 R21 Avg. 1.6506 1.8522 1.7232 1.7565 1.6905 1.2214 1.2256 1.2173
    RMSE 0.3815 0.5203 0.4436 0.4639 0.4255 0.2849 0.2809 0.2888
    R22 Avg. 1.6472 1.7643 1.7021 1.7306 1.6740 1.2325 1.2367 1.2284
    RMSE 0.3663 0.4364 0.4206 0.4370 0.4059 0.2737 0.2697 0.2776
    R23 Avg. 1.6552 1.8408 1.7213 1.7521 1.6909 1.2344 1.2386 1.2303
    RMSE 0.3830 0.5095 0.4434 0.4611 0.4277 0.2731 0.2692 0.2771
    R24 Avg. 1.6502 1.8340 1.7250 1.7561 1.6944 1.2308 1.2350 1.2267
    RMSE 0.3765 0.5002 0.4431 0.4613 0.4270 0.2757 0.2717 0.2796
    60 40 R25 Avg. 1.6030 1.7586 1.6638 1.6874 1.6405 1.2544 1.2584 1.2504
    RMSE 0.2937 0.3927 0.3486 0.3630 0.3357 0.2522 0.2483 0.2560
    R26 Avg. 1.5999 1.6826 1.6436 1.6634 1.6239 1.2714 1.2753 1.2675
    RMSE 0.2813 0.3275 0.3297 0.3404 0.3200 0.2355 0.2318 0.2392
    R27 Avg. 1.6060 1.7448 1.6650 1.6865 1.6437 1.2727 1.2766 1.2688
    RMSE 0.2925 0.3799 0.3512 0.3628 0.3407 0.2343 0.2306 0.2380
    R28 Avg. 1.6029 1.7395 1.6603 1.6818 1.6391 1.2704 1.2744 1.2665
    RMSE 0.2875 0.3722 0.3404 0.3524 0.3296 0.2364 0.2327 0.2401
    50 R29 Avg. 1.6029 1.7340 1.6472 1.6676 1.6270 1.2656 1.2696 1.2617
    RMSE 0.2684 0.3534 0.3059 0.3182 0.2947 0.2406 0.2368 0.2444
    R30 Avg. 1.5979 1.6890 1.6329 1.6511 1.6148 1.2744 1.2783 1.2705
    RMSE 0.2559 0.3099 0.2854 0.2962 0.2754 0.2319 0.2282 0.2356
    R31 Avg. 1.6025 1.7255 1.6466 1.6663 1.6271 1.2742 1.2782 1.2703
    RMSE 0.2660 0.3449 0.3082 0.3200 0.2975 0.2321 0.2284 0.2358
    R32 Avg. 1.6008 1.7235 1.6465 1.6662 1.6270 1.2721 1.2760 1.2682
    RMSE 0.2633 0.3415 0.3039 0.3158 0.2931 0.2342 0.2305 0.2379

     | Show Table
    DownLoad: CSV
    Table 4.a.  AILs and CPs (in %) under different PT-IIC schemes at θ=0.5.
    n m Scheme Asy-CI Boot-p Boot-t HPD: Non-INF HPD: INF
    AIL CP AIL CP AIL CP AIL CP AIL CP
    20 10 R1 1.4189 95.9 1.5415 95.9 0.7608 88.4 4.8626 95.0 0.5204 99.1
    R2 1.1619 96.1 1.2247 98.2 0.6802 89.5 3.2465 95.1 0.6088 97.7
    R3 1.3180 96.5 1.4333 97.4 0.5603 91.3 3.9636 95.1 0.6048 99.5
    R4 1.2576 96.4 1.3209 95.5 0.8746 92.0 3.6755 95.0 0.5620 99.2
    15 R5 1.2277 95.6 1.2477 96.1 0.6493 92.6 2.6191 95.1 0.3386 99.5
    R6 1.1148 95.5 1.1275 96.5 0.5890 90.4 2.3954 95.0 0.3972 99.7
    R7 1.1773 95.2 1.1608 96.8 0.6258 89.5 2.8261 95.1 0.4248 99.7
    R8 1.2193 95.3 1.2128 95.9 0.5943 88.9 3.0876 95.1 0.3578 99.2
    30 20 R9 1.0927 96.7 1.0943 95.1 0.6490 91.3 1.3973 95.1 0.2841 99.5
    R10 0.9981 96.3 0.9243 97.7 0.5944 93.0 1.1855 95.2 0.3108 98.7
    R11 1.0667 96.1 1.0269 98.2 0.5948 92.1 1.4141 95.0 0.3176 99.3
    R12 1.0805 96.1 1.0777 98.2 0.6145 89.9 1.3295 95.0 0.3026 98.3
    25 R13 1.0243 95.1 0.9469 96.3 0.6274 95.1 1.2047 95.2 0.2698 99.1
    R14 0.9742 96.0 0.8937 95.4 0.6363 92.3 1.0922 95.1 0.2675 98.0
    R15 1.0104 95.7 0.9589 97.3 0.6613 91.1 1.1901 95.2 0.2783 98.4
    R16 1.0229 95.1 0.9508 96.1 0.6376 90.6 1.1745 95.0 0.2655 98.7
    40 20 R17 1.0921 96.7 1.0707 95.2 0.6702 91.7 1.1492 95.1 0.2697 98.8
    R18 0.9883 96.7 0.9653 95.2 0.5982 93.2 1.0353 95.1 0.3432 99.9
    R19 1.0724 96.3 1.0343 97.8 0.6204 93.0 1.1892 95.0 0.3265 99.9
    R20 1.0230 96.5 0.9883 95.0 0.6683 92.6 1.0704 95.1 0.3059 99.9
    30 R21 0.9616 96.3 0.8855 95.4 0.6230 94.4 0.9886 96.0 0.2726 99.6
    R22 0.9058 96.0 0.7910 95.0 0.6209 94.7 0.9068 95.2 0.2673 98.8
    R23 0.9501 95.9 0.8675 98.0 0.5978 95.1 1.0082 95.1 0.2681 98.3
    R24 0.9603 95.9 0.8720 97.5 0.6431 94.9 0.9898 95.2 0.2638 99.1
    60 40 R25 0.8883 95.7 0.7760 98.3 0.6047 93.4 0.8285 95.3 0.2492 97.9
    R26 0.8094 96.8 0.6893 96.5 0.6022 96.0 0.7593 95.9 0.2528 97.7
    R27 0.8834 96.4 0.7516 98.1 0.6123 95.2 0.8392 95.2 0.2500 98.7
    R28 0.8865 96.3 0.7366 95.7 0.5882 95.6 0.8417 95.9 0.2486 96.9
    50 R29 0.8015 96.8 0.6950 95.0 0.6217 91.8 0.7084 96.3 0.2395 97.3
    R30 0.7498 96.7 0.6383 97.1 0.5683 94.6 0.6648 95.9 0.2446 97.9
    R31 0.7953 96.9 0.6675 96.4 0.5653 95.0 0.7297 95.2 0.2433 97.3
    R32 0.8015 96.9 0.6834 94.2 0.5587 93.5 0.7211 95.3 0.2435 97.7

     | Show Table
    DownLoad: CSV
    Table 4.b.  AILs and CPs (in %) under different PT-IIC schemes at α=1.5.
    n m Scheme Asy-CI Boot-p Boot-t HPD: Non-INF HPD: INF
    AIL CP AIL CP AIL CP AIL CP AIL CP
    20 10 R1 2.3107 96.1 2.1366 94.0 2.0951 93.1 2.7333 97.2 0.3973 95.1
    R2 2.3761 95.6 2.3699 95.1 2.1587 96.4 2.7816 97.9 0.6140 95.1
    R3 2.4083 95.7 2.2643 96.0 2.3124 92.4 2.8226 97.5 0.5531 95.1
    R4 2.2859 96.3 2.1960 98.0 2.2039 93.4 2.6721 97.0 0.4768 95.0
    15 R5 2.0615 95.7 1.8408 95.2 1.8885 92.9 2.3849 97.7 0.2278 96.0
    R6 1.9783 95.9 1.8272 94.9 1.8646 91.8 2.2227 97.2 0.2610 95.2
    R7 2.0682 95.7 1.8650 95.0 1.9044 93.2 2.3365 97.6 0.3140 95.1
    R8 2.0407 95.5 1.8657 95.0 1.9896 92.9 2.2907 96.9 0.2497 95.5
    30 20 R9 1.7057 96.7 1.5668 97.3 1.6037 94.6 1.7739 96.0 0.2086 97.1
    R10 1.6217 95.9 1.4839 96.7 1.6509 94.0 1.6737 96.7 0.2075 96.5
    R11 1.6993 96.4 1.5414 97.0 1.6649 93.9 1.7660 96.7 0.2179 96.1
    R12 1.6768 96.3 1.5368 96.3 1.6548 96.4 1.7178 97.6 0.2140 96.4
    25 R13 1.5994 97.5 1.4491 97.1 1.5323 93.1 1.6573 96.8 0.1837 97.9
    R14 1.5289 97.1 1.4021 98.3 1.4219 93.0 1.5820 96.0 0.1882 96.4
    R15 1.5880 97.1 1.4487 98.0 1.4920 90.6 1.6958 96.9 0.1899 96.4
    R16 1.5784 97.3 1.4300 97.5 1.5311 94.3 1.6675 96.5 0.1898 96.7
    40 20 R17 1.6089 96.7 1.4261 93.2 1.4952 94.2 1.5914 96.8 0.2241 97.1
    R18 1.5611 96.0 1.4436 94.2 1.5665 92.3 1.5812 97.2 0.2495 95.9
    R19 1.6019 96.5 1.4577 92.0 1.5229 94.5 1.6767 97.1 0.2508 96.0
    R20 1.5287 96.3 1.4226 96.4 1.4079 95.6 1.5991 96.9 0.2252 96.1
    30 R21 1.4275 96.7 1.2919 98.0 1.3891 94.0 1.4599 96.1 0.2088 97.2
    R22 1.3438 96.4 1.2161 97.3 1.2368 96.0 1.3826 95.5 0.2077 95.9
    R23 1.4091 96.0 1.2930 98.8 1.3777 94.6 1.4867 97.1 0.2088 96.3
    R24 1.3959 96.4 1.2764 97.4 1.2923 94.7 1.4635 95.5 0.2031 96.9
    60 40 R25 1.1996 97.7 1.0889 95.4 1.1660 93.3 1.1783 95.7 0.2253 98.4
    R26 1.1140 97.3 1.0045 96.1 1.0582 94.7 1.0678 96.3 0.2103 96.9
    R27 1.1718 97.7 1.0669 96.0 1.1131 94.8 1.1786 95.9 0.2103 96.4
    R28 1.1594 97.9 1.0421 96.7 1.0855 95.8 1.1774 96.1 0.2136 97.9
    50 R29 1.1143 98.0 1.0070 97.4 1.0414 94.0 1.0306 96.0 0.2038 98.0
    R30 1.0557 98.1 0.9460 95.8 0.9877 98.1 0.9522 97.2 0.1999 97.6
    R31 1.0961 98.3 0.9732 96.1 1.0344 95.4 1.0251 97.2 0.2044 97.6
    R32 1.0912 98.0 0.9802 95.6 1.0566 96.2 1.0332 96.7 0.2008 97.7

     | Show Table
    DownLoad: CSV

    From the results obtained for point estimation of distribution parameters, it is generally observed that an increase in both n and m leads to an improvement in Avg. estimates and its convergence towards the true parameter values. Additionally, we notice a decrease in the RMSEs as well. Regarding interval estimation, as n and m increase, we observe a reduction in the AILs for all interval estimation methods. Additionally, it is worth mentioning that the CP ranges from 90% to 99%. The confidence intervals can be ranked in terms of the efficiency of AILs as follows:

    HPD: INFBoot-tAsy-CIBoot-pHPD: Non-INF.

    In terms of the efficiency of proposed estimation methods, by comparing classical point estimation methods, we observe that the efficiency of the MLE method for the parameter θ is superior to that of the MPS estimations; and for the parameter α, we observe the opposite. Concerning the BEs methods using assumed loss functions, it is evident that the BEs using LN1 loss function at v=0.5 exhibits the highest efficiency, followed by the estimation using the SE loss function, and then the LN2 loss function at v=0.5. Moreover, when comparing the BEs using MCMC under INF and Non-INF approaches, there is a very clear indication that the INF prior case significantly outperforms the Non-INF prior one. In a broader sense, it can be concluded that the BEs using MCMC under INF case efficiency are superior among the assumed methods of classical and Bayes estimation.

    Furthermore, it is worth noting that these conclusions pertain to a specific set of distribution parameters (θ=0.5,α=1.5). We recommend conducting further research on alternative parameter combinations and comparing the results obtained with those from our study.

    Suppose that one can generate a random sample following scheme number 30 (n=60,m=50, and R30=(049,10)), assuming the two parameters of the GPUHLG distribution as θ=0.5,α=1.5. The generated samples are provided in Table 5, and upon examining them, we find that they are ordered and bounded from zero to one, as specified in the distribution range.

    Table 5.  Simulated random data for illustrative example.
    0.0321 0.0591 0.0697 0.0880 0.1156 0.1383 0.1767 0.1867 0.1979 0.2214
    0.2374 0.2408 0.2487 0.2709 0.2728 0.2921 0.3040 0.3068 0.3071 0.3481
    0.3563 0.3599 0.3949 0.4030 0.4215 0.4298 0.4531 0.4627 0.4651 0.4741
    0.4947 0.5421 0.5430 0.5535 0.5623 0.5656 0.5827 0.6006 0.6165 0.6260
    0.6267 0.6358 0.6530 0.6821 0.7341 0.7648 0.7798 0.8341 0.9472 0.9705

     | Show Table
    DownLoad: CSV

    Hence, we obtained the estimates of parameters (θ,α), respectively, as follows:

    ● Classical estimation point: MLE: (0.4208,1.9353) and MPS: (0.3471,2.1086).

    ● BE point: BE Non-INF: (0.4266,1.9847) and BE Non-INF: (0.6496,1.3310).

    The convergence of MCMC estimates using the MH algorithm can be demonstrated in Figures 4 and 5. These figures include trace plots and histograms, respectively, for each estimated parameter, θ and α, under two prior scenarios: Non-INF and INF. These graphs illustrate the normality of generated posterior samples for INF priors for both parameters. Additionally, for parameter α in the case of Non-INF priors, the posterior samples also exhibit normal distribution. However, for parameter θ under Non-INF priors, the posterior samples do not follow a normal distribution.

    Figure 4.  Trace plot of MCMC samples for simulated data.
    Figure 5.  Histogram of MCMC samples for simulated data.

    A real dataset is analyzed to offer illustrative instances and to assess the statistical effectiveness of MLE, MPS, and BEs for the GPUHLG distribution under various PT-IIC schemes.

    The following dataset consists of 20 flood observations and was previously analyzed by [30]. The dataset is provided below:

    Table 6.a.  Data set of flood data for 20 observations.
    0.2650 0.2690 0.2970 0.3150 0.3235 0.3380 0.3790 0.3790 0.3920 0.4020
    0.4120 0.4160 0.4180 0.4230 0.4490 0.4840 0.4940 0.6130 0.6540 0.7400

     | Show Table
    DownLoad: CSV

    To begin with, it is crucial to determine whether the GPUHLG distribution is a suitable choice for analyzing the provided dataset. This involves calculating the MLEs for the parameters (θ,α) and evaluating various goodness-of-fit criteria, including the negative log-likelihood criterion (NLC), Akaike information criterion (AIC), Bayesian information criterion (BIC), the Kolmogorov-Smirnov (K-S) test statistic and its corresponding p-value. These criteria are then compared with those obtained from alternative distributions, such as the Weibull (We), inverse gamma (IGa), beta, Kumaraswamy (Kum), and generalized exponential (GEx) distributions. Lower values of these criteria, along with larger p-values, indicate a better fit. The findings are presented in Table 6.b, which includes parameter estimates and goodness-of-fit statistics. The results from Table 6.b indicate that, among the compared distributions, the GPUHLG distribution serves as an appropriate model for the provided dataset. Consequently, the dataset can be effectively analyzed using this distribution, with the MLEs calculated as ˆθ=0.0054 and ˆα=6.4977.

    Table 6.b.  Evaluation of the goodness of fit for the provided data set.
    Pdf Estimate NLC AIC BIC K-S P-value
    GPUHLG 0.0054 6.4977 -16.1649 -28.3298 -26.3384 0.1177 0.9447
    GEx 57.5089 0.0908 -16.1383 -28.2766 -26.2852 0.1217 0.9285
    IGa 14.5702 5.7347 -15.7329 -27.4659 -25.4744 0.1271 0.9032
    We 3.5258 0.4688 -13.2640 -22.5280 -20.5365 0.1987 0.4084
    beta 6.7564 9.1108 -14.0622 -24.1244 -22.1330 0.1987 0.4081
    Kum 3.3633 11.7902 -12.8660 -21.0265 -19.7409 0.2109 0.3359

     | Show Table
    DownLoad: CSV

    For a visual evaluation of the compatibility between the provided dataset and the chosen distribution, graphical representations can be highly informative. One common approach is to juxtapose the empirical cumulative distribution function (CDF) with the fitted CDFs for alternative distributions such as Weibull (We), inverse gamma (IGa), beta, Kumaraswamy (Kum), and generalized exponential (GEx). Moreover, a histogram can be illustrated alongside fitted probability density function (pdf) lines for the same set of distributions. Figure 6 illustrates these plotted curves for the CDFs and pdfs of the provided dataset in comparison with their respective distributions. These visualizations clearly underscore that the GPUHLG distribution aligns more favorably with the data compared to the other considered distributions, at least within the context of this particular dataset.

    Figure 6.  The density and empirical cdf for given real data set with corresponding distributions.

    Using the original dataset, we generate eight PT-IIC samples. These samples are created with two distinct numbers of stages, specifically, m=10 and m=15, while following the item removal plan detailed in Table 1. Furthermore, we examine a situation where complete sampling cases are considered, where n=m=20 and R1=R2==Rm=0.

    In Table 7.a, we compute estimates (Est.) and standard errors (St.Er) through classical estimation methods, specifically, MLEs and MPS. These estimations are carried out for the parameters θ and α, considering varying PT-IIC patterns based on the provided real data set. Furthermore, we calculate BEs using the MH algorithm with the Non-INF prior. While generating samples from the posterior distribution using MH, we initialize the values of (θ,α) as (θ(0),α(0))=(ˆθ,ˆα), where ˆθ and ˆα represent the MLEs of the parameters θ and α, respectively. Subsequently, we discard the initial 2000 burn-in samples from a total of 10,000 samples generated from the posterior density. BEs are then derived using different loss functions, including SE, LN1 with v=0.5, and LN1 with v=0.5, as defined by Eqs (4.7) and (4.8). Additionally, Table 7.b presents the lower and upper bounds of confidence intervals for the parameters θ and α using various interval estimation methods: Asy-CI, Boot.p, Boot.t, and HPD.

    Table 7.a.  Classical and BE point estimates and standard error for given real data set under different PT-IIC schemes.
    n m Scheme Classical BE: MCMC
    MLE MPS SEL LN1 LN2
    20 10 R1 θ Est. 0.0136 0.0045 0.0104 0.0106 0.0102
    St.Er 0.0201 0.0048 0.0285 0.0302 0.0277
    α Est. 6.0779 7.3007 9.3911 11.2794 7.4286
    St.Er 1.5177 1.2496 2.9862 3.1285 2.9233
    R2 θ Est. 0.0356 0.0315 0.0036 0.0037 0.0036
    St.Er 0.0490 0.0462 0.0056 0.0059 0.0057
    α Est. 5.4831 5.7276 8.9865 10.0021 8.2808
    St.Er 1.5587 1.6848 1.8498 1.9445 1.8511
    R3 θ Est. 0.0293 0.0130 0.0758 0.0792 0.0727
    St.Er 0.0419 0.0201 0.1144 0.1057 0.1152
    α Est. 5.6885 6.6484 5.7250 6.4814 5.0367
    St.Er 1.5768 1.7430 1.7178 1.6895 1.7214
    R4 θ Est. 0.0166 0.0059 0.0297 0.0305 0.0289
    St.Er 0.0256 0.0069 0.0554 0.0289 0.0551
    α Est. 5.8469 6.9524 6.7183 7.6361 5.8656
    St.Er 1.5669 1.2739 1.9392 1.8330 1.9531
    15 R5 θ Est. 0.0049 0.0026 0.0018 0.0018 0.0018
    St.Er 0.0068 0.0011 0.0027 0.0028 0.0026
    α Est. 6.5072 7.1806 8.5326 9.2548 7.8853
    St.Er 1.3548 0.6462 1.6942 1.5213 1.7025
    R6 θ Est. 0.0664 0.0554 0.0550 0.0559 0.0541
    St.Er 0.0653 0.0580 0.0596 0.0622 0.0589
    α Est. 4.4391 4.6638 5.0685 5.3604 4.7860
    St.Er 1.0389 1.1172 1.0750 1.0973 1.1163
    R7 θ Est. 0.0110 0.0049 0.0225 0.0229 0.0220
    St.Er 0.0146 0.0044 0.0431 0.0458 0.0420
    α Est. 5.9344 6.7844 6.0844 6.5910 5.6045
    St.Er 1.3495 0.9911 1.4046 1.4709 1.3821
    R8 θ Est. 0.0058 0.0020 0.0017 0.0017 0.0017
    St.Er 0.0081 0.0003 0.0032 0.0033 0.0031
    α Est. 6.6795 7.8283 8.7660 9.3073 8.2410
    St.Er 1.4660 0.4950 1.4727 1.5300 1.4465
    20 Complete θ Est. 0.0054 0.0044 0.0053 0.0053 0.0053
    St.Er 0.0067 0.0035 0.0001 0.0001 0.0001
    α Est. 6.4977 6.1805 6.5046 6.5420 6.4684
    St.Er 1.2688 0.9650 0.3838 0.3831 0.3871

     | Show Table
    DownLoad: CSV
    Table 7.b.  Different interval estimates for given real data set under different PT-IIC schemes.
    n m Scheme Asy-CI Boot-p Boot-t HPD: Non-INF
    20 10 R1 θ (0.0000, 0.0530) (0.0001, 0.1115) (0.0000, 1.9533) (0.0000, 0.0636)
    α (3.1032, 9.0526) (4.3132, 12.1106) (0.0000, 13.3042) (4.1305, 14.3879)
    R2 θ (0.0000, 0.1317) (0.0000, 0.0937) (0.0000, 1.3141) (0.0000, 0.0117)
    α (2.4281, 8.5380) (4.1321, 15.1568) (0.0000, 15.1879) (6.1364, 13.4784)
    R3 θ (0.0000, 0.1115) (0.0001, 0.2209) (0.0000, 0.6662) (0.0004, 0.3388)
    α (2.5981, 8.7789) (4.1054, 10.9713) (3.7289, 17.0075) (2.3982, 9.0098)
    R4 θ (0.0000, 0.0668) (0.0000, 0.2016) (0.0000, 22.2738) (0.0001, 0.1472)
    α (2.7758, 8.9180) (3.7858, 13.4185) (0.0000, 12.7341) (3.1100, 10.0225)
    15 R5 θ (0.0000, 0.0182) (0.0001, 0.0292) (0.0000, 0.2996) (0.0000, 0.0069)
    α (3.8518, 9.1627) (4.9720, 10.2566) (0.0000, 13.8741) (5.7423, 11.6252)
    R6 θ (0.0000, 0.1944) (0.0004, 0.1331) (0.0000, 0.2994) (0.0031, 0.1831)
    α (2.4029, 6.4753) (3.6820, 10.0842) (3.5814, 9.6642) (2.9210, 7.0976)
    R7 θ (0.0000, 0.0396) (0.0001, 0.0971) (0.0000, 1.7671) (0.0003, 0.0721)
    α (3.2894, 8.5794) (4.1532, 10.3699) (0.0000, 16.7183) (3.6938, 9.2988)
    R8 θ (0.0000, 0.0217) (0.0000, 0.0556) (0.0000, 0.8662) (0.0000, 0.0065)
    α (3.8062, 9.5529) (4.6246, 12.0765) (0.0000, 12.2860) (5.9434, 11.6350)
    20 Complete θ (0.0000, 0.0184) (0.0001, 0.0387) (0.0000, 0.3996) (0.0051, 0.0054)
    α (4.0108, 8.9845) (4.6717, 10.5509) (0.0000, 13.0766) (5.7553, 7.2060)

     | Show Table
    DownLoad: CSV

    In the preceding sections, we have deliberated upon the classical and BEs of unknown parameters within the context of the GPUHLG distribution when samples are procured using the PT-IIC approach. Consequently, to execute a life-testing experiment following the PT-IIC scheme, it becomes imperative to possess foreknowledge of the values of n, m, and (R1,R2,,Rm). However, in various reliability and life testing studies, practical considerations should select the optimum PT-IIC scheme from a class of possible schemes. This problem was first discussed in detail by [6], which considered the problem of determining the optimal censoring plan via various set-ups. The problem of comparing two different censoring schemes has received a lot of interest from various researchers. See, for example, [31,32,33,34,35,36].

    In order to identify the most appropriate PT-IIC scheme, we assess an information measure through a specific set of criteria. These criteria for optimal sampling are contingent upon the variance-covariance matrix F1 of the maximum likelihood estimators (MLEs), as formulated in Eq (3.5), and can be articulated in a subsequent manner:

    Criterion 1: Minimizing the determinant of F1:

    det[F1]=var(ˆθ)var(ˆα)(cov(ˆθ,ˆα))2.

    Criterion 2: Minimizing the trace of (F1):

    tr[F1]=var(ˆθ)+var(ˆα).

    Criterion 3: This criterion relies on the choice of u and aims to minimize the variance of the logarithm of the MLE of the u-th quantile (denoted as log(ˆTu)), where 0<u<1. The u-th quantile of the GPUHLG distribution is given by

    Tu=(22θ+uθuθ)1α.

    Consequently, the logarithm of Tu is expressed as:

    log(Tu)=1α[log(22θ+uθ)log(uθ)].

    By utilizing the delta method, an approximation of the variance of log(ˆTu) is derived as:

    Var(log(ˆTu))=[log(ˆTu)]TF1[log(ˆTu)].

    Here, [log(ˆTu)]T represents the gradient of log(Tu) concerning the parameters θ and α, evaluated at θ=ˆθ and α=ˆα. The partial derivatives of log(Tu) are:

    log(Tu)θ=1α[2+u22θ+uθ1θ],log(Tu)α=1α2[log(22θ+uθ)log(uθ)].

    This leads to the expression for the variance of log(ˆTu):

    Var(log(ˆTu))=[log(Tu)θlog(Tu)α][var(ˆθ)cov(ˆθ,ˆα)cov(ˆα,ˆθ)var(ˆα)][log(Tu)θlog(Tu)α].

    It is known that the optimal sampling scheme for PT-IIC is the one that attains the lowest value in any of the criteria mentioned above. To assess the efficacy of the suggested optimal criteria across various PT-IIC schemes, we will conduct a Monte Carlo simulation and also consider the provided real data set.

    Monte-Carlo Simulation: The simulation method was utilized while considering the identical steps performed in the simulation section. Specifically, the initial two steps were employed, involving the estimation of MLEs for the GPUHLG distribution and obtaining the asymptotic variances of MLEs (the Fisher information matrix), with parameters θ=0.5 and α=1.5, across various PT-IIC patterns as outlined in Table 1.

    We conducted simulations across 1000 iterations and subsequently computed the Avg. value for each criterion, as outlined in Table 8.a. Generally, we observe that as the n or m increases, the criterion value tends to decrease. Furthermore, we notice that the specific patterns: R2,R6,,R30, where items are removed towards the end of the m stages, yield lower values. This implies that these patterns are particularly advantageous for the sampling of PT-IIC. Regarding the comparison between criteria themselves, we believe that they differ in terms of calculation methodology. Therefore, the value of one criterion does not hold significance in relation to another criterion. However, for the Criterion 3, it is possible to compare results based on variations in u. We observe that as the value of u increases, the value of the criterion decreases.

    Table 8.a.  Optimal censoring scheme under simulated data from GPUHLG distribution at (θ,α)=(0.5,1.5).
    n m Scheme Criterion 1 Criterion 2 Criterion 3
    u=0.25 u=0.5 u=0.75
    20 10 R1 0.03506 0.83682 0.11268 0.07976 0.05729
    R2 0.01217 0.64069 0.06442 0.04715 0.04140
    R3 0.01998 0.79471 0.07253 0.06173 0.05435
    R4 0.01523 0.62961 0.07420 0.05620 0.04626
    15 R5 0.01297 0.49835 0.07986 0.05236 0.03773
    R6 0.00896 0.44197 0.06528 0.04037 0.02931
    R7 0.01077 0.50202 0.06663 0.04458 0.03420
    R8 0.01328 0.52928 0.07711 0.05219 0.03785
    30 20 R9 0.00700 0.35165 0.06254 0.04127 0.02893
    R10 0.00384 0.28795 0.04490 0.02887 0.02167
    R11 0.00480 0.33571 0.04582 0.03353 0.02681
    R12 0.00559 0.33819 0.05100 0.03700 0.02830
    25 R13 0.00432 0.28031 0.05162 0.03272 0.02292
    R14 0.00333 0.25036 0.04523 0.02778 0.01949
    R15 0.00373 0.27659 0.04456 0.02914 0.02169
    R16 0.00433 0.28334 0.04939 0.03218 0.02287
    40 20 R17 0.00603 0.31757 0.05918 0.04126 0.02910
    R18 0.00272 0.27014 0.03429 0.02544 0.02131
    R19 0.00429 0.33148 0.03842 0.03314 0.02797
    R20 0.00353 0.28271 0.03848 0.02951 0.02350
    30 R21 0.00294 0.22649 0.04286 0.02747 0.01906
    R22 0.00188 0.19031 0.03415 0.02132 0.01522
    R23 0.00223 0.21707 0.03406 0.02338 0.01786
    R24 0.00266 0.22059 0.03809 0.02631 0.01922
    60 40 R25 0.00154 0.16089 0.03263 0.02116 0.01457
    R26 0.00087 0.13226 0.02284 0.01473 0.01079
    R27 0.00109 0.15160 0.02398 0.01768 0.01377
    R28 0.00120 0.15151 0.02599 0.01897 0.01425
    50 R29 0.00104 0.13316 0.02634 0.01657 0.01144
    R30 0.00077 0.11752 0.02294 0.01409 0.00969
    R31 0.00085 0.12752 0.02335 0.01529 0.01111
    R32 0.00096 0.12957 0.02508 0.01646 0.01153

     | Show Table
    DownLoad: CSV

    Real data application: Using the previous application "Real Data Analysis" section, we considered the first eight PT-IIC schemes, as outlined in Table 1, utilizing the provided real data set. By utilizing the variance-covariance matrix of the MLEs, it is possible to compute the values of the three criteria for all conceivable selections of n, m, and schemes Rl, where l=1,2,,8, as well as the comprehensive sampling approach where m=n. The outcomes are presented in Table 8.b. Notably, we observe that the optimal schemes are R2 and R6.

    Table 8.b.  Optimal censoring scheme for given real data set.
    n m Scheme Criterion 1 Criterion 2 Criterion 3
    u=0.25 u=0.5 u=0.75
    20 10 R1 5.44E-03 2.53956 0.00627 0.00688 0.01037
    R2 5.41E-04 1.33875 0.02476 0.00472 0.00364
    R3 1.87E-03 1.94060 0.00908 0.00952 0.01424
    R4 8.52E-03 2.40327 0.00616 0.00637 0.01045
    15 R5 3.10E-05 1.66920 0.00621 0.00561 0.00789
    R6 1.03E-05 1.07840 0.00936 0.00383 0.00284
    R7 1.31E-04 1.56659 0.00660 0.00573 0.00532
    R8 1.77E-05 2.09906 0.00476 0.00443 0.00667
    20 Complete 4.46E-07 1.21885 0.00250 0.00199 0.00262

     | Show Table
    DownLoad: CSV

    In the field of distribution theory, a continuous effort is dedicated to generalizing existing distributions. This pursuit aims to create more robust and adaptable models that can be applied to a wide array of scenarios. To achieve this goal, a multitude of methods are explored, as evidenced by a wealth of literature. The validity and practicality of the chosen distribution in fitting the given data significantly impact the subsequent analysis and empirical findings. This paper centers on addressing the challenge of estimating unknown parameters within the context of a GPUHLG distribution under a PT-IIC scheme. Our approach encompasses both classical and Bayesian perspectives. We derived MLEs, MPS, Asy-CI estimates, and bootstrap confidence intervals for the unidentified parameters of the GPUHLG distribution. Additionally, we employed MCMC by utilizing MH algorithm to calculate BE under both symmetric and asymmetric loss functions, accompanied by their corresponding HPD interval estimates. We explored methods for selecting hyper-parameter values for the INF prior case. The simulation study revealed that BEs under the INF prior consistently outperform each of the classical estimates as well as BEs under the Non-INF prior case. We also identified the optimal censoring scheme for life testing experiments, considering three criteria measures, a crucial aspect for practitioners in the field of reliability. The flood data set was employed for all estimations within our research study as a real data application. Future research directions could involve delving into neurotrophic statistics applied to the GPUHLG distribution. Furthermore, there is potential to model COVID-19 data using various progressive censoring schemes, presenting an avenue for further investigation.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by researcher support project number (RSPD2023R860), King Saud University, Riyadh, Saudi Arabia.

    The authors declare no conflicts of interest.



    [1] M. S. Arif, M. Jhangir, Y. Nawaz, I. Abbas, K. Abodayeh, A. Ejaz, Numerical study for magnetohydrodynamic (MHD) unsteady Maxwell nanofluid flow impinging on heated stretching sheet, Comp. Model. Eng. Sci., 133 (2022), 303–325. https://doi.org/10.32604/cmes.2022.020979 doi: 10.32604/cmes.2022.020979
    [2] A. Ejaz, Y. Nawaz, M. S. Arif, D. S. Mashat, K. Abodayeh, Stability analysis of predator-prey system with consuming resource and disease in predator species, Comp. Model. Eng. Sci., 132 (2022), 489–506. https://doi.org/10.32604/cmes.2022.019440 doi: 10.32604/cmes.2022.019440
    [3] R. S. V. Kumar, G. Sowmya, R. Kumar, Execution of probabilists’ Hermite collocation method and regression approach for analyzing the thermal distribution in a porous radial fin with the effect of an inclined magnetic field, Eur. Phys. J. Plus, 138 (2023), 422. https://doi.org/10.1140/epjp/s13360-023-03986-3 doi: 10.1140/epjp/s13360-023-03986-3
    [4] U. Khan, R. N. Kumar, A. Zaib, B. C. Prasannakumara, A. Ishak, A. M. Galal, et al., Time-dependent flow of water-based ternary hybrid nanoparticles over a radially contracting/expanding and rotating permeable stretching sphere, Therm. Sci. Eng. Prog., 36 (2022), 101521. https://doi.org/10.1016/j.tsep.2022.101521 doi: 10.1016/j.tsep.2022.101521
    [5] S. Singh, D. Kumar, K. N. Rai, Analytical solution of Fourier and non-Fourier heat transfer in longitudinal fin with internal heat generation and periodic boundary condition, Int. J. Therm. Sci., 125 (2018), 166–175. https://doi.org/10.1016/j.ijthermalsci.2017.11.029 doi: 10.1016/j.ijthermalsci.2017.11.029
    [6] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Tran., 116 (2018), 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091
    [7] M. Alkasassbeh, Z. Omar, F. Mebarek‐Oudina, J. Raza, A. Chamkha, Heat transfer study of convective fin with temperature‐dependent internal heat generation by hybrid block method, Heat Transf.-Asian Res., 48 (2019), 1225–1244. https://doi.org/10.1002/htj.21428 doi: 10.1002/htj.21428
    [8] M. Kezzar, I. Tabet, M. R. Eid, A new analytical solution of longitudinal fin with variable heat generation and thermal conductivity using DRA, Eur. Phys. J. Plus, 135, (2020), 120. https://doi.org/10.1140/epjp/s13360-020-00206-0 doi: 10.1140/epjp/s13360-020-00206-0
    [9] S. Y. Kim, J. W. Paek, B. H. Kang, Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger, J. Heat Transfer., 122 (2000), 572–578. https://doi.org/10.1115/1.1287170 doi: 10.1115/1.1287170
    [10] M. Fathi, M. M. Heyhat, M. Z. Targhi, S. Bigham, Porous-fin microchannel heat sinks for future micro-electronics cooling, Int. J. Heat Mass Tran., 202 (2023), 123662. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123662 doi: 10.1016/j.ijheatmasstransfer.2022.123662
    [11] G. Sowmya, R. S. V. Kumar, Assessment of transient thermal distribution in a moving porous plate with temperature-dependent internal heat generation using Levenberg–Marquardt backpropagation neural network, Waves Random Complex, 2023, 1–21. https://doi.org/10.1080/17455030.2023.2198040 doi: 10.1080/17455030.2023.2198040
    [12] B. J. Gireesha, G. Sowmya, Heat transfer analysis of an inclined porous fin using differential transform method, Int. J. Ambient Energy, 43 (2022), 3189–3195. https://doi.org/10.1080/01430750.2020.1818619 doi: 10.1080/01430750.2020.1818619
    [13] J. Wang, Y. P. Xu, R. Qahiti, M. Jafaryar, M. A. Alazwari, N. H. Abu-Hamdeh, et al., Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability, J. Petrol. Sci. Eng., 208 (2022), 109734. https://doi.org/10.1016/j.petrol.2021.109734 doi: 10.1016/j.petrol.2021.109734
    [14] V. Venkitesh, A. Mallick, Thermal analysis of a convective–conductive–radiative annular porous fin with variable thermal parameters and internal heat generation, J. Therm. Anal. Calorim., 147 (2022), 1519–1533. https://doi.org/10.1007/s10973-020-10384-9 doi: 10.1007/s10973-020-10384-9
    [15] V. Venkitesh, A. Mallick, Thermal analysis of a convective–conductive–radiative annular porous fin with variable thermal parameters and internal heat generation, J. Therm. Anal. Calorim., 147 (2022), 1519–1533. https://doi.org/10.1007/s10973-020-10384-9 doi: 10.1007/s10973-020-10384-9
    [16] Z. U. Din, A. Ali, M. De la Sen, G. Zaman, Entropy generation from convective–radiative moving exponential porous fins with variable thermal conductivity and internal heat generations, Sci. Rep., 12 (2022), 1791. https://doi.org/10.1038/s41598-022-05507-1 doi: 10.1038/s41598-022-05507-1
    [17] R. S. V. Kumar, G. Sowmya, M. C. Jayaprakash, B. C. Prasannakumara, M. I. Khan, K. Guedri, et al., Assessment of thermal distribution through an inclined radiative-convective porous fin of concave profile using generalized residual power series method (GRPSM), Sci. Rep., 12 (2022), 13275. https://doi.org/10.1038/s41598-022-15396-z doi: 10.1038/s41598-022-15396-z
    [18] T. Cyriac, B. N. Hanumagowda, M. Umeshaiah, V. Kumar, J. S. Chohan, R. N. Kumar, et al., Performance of rough secant slider bearing lubricated with couple stress fluid in the presence of magnetic field, Mod. Phys. Lett. B, 2023, 2450140. https://doi.org/10.1142/S0217984924501409
    [19] G. Sharma, B. N. Hanumagowda, S. V. K. Varma, R. N. Kumar, A. S. Alqahtani, M. Y. Malik, Impact of magnetic field and nonlinear radiation on the flow of Brinkmann-type chemically reactive hybrid nanofluid: A numerical study, J. Therm. Anal. Calorim., 149 (2024), 745–759. https://doi.org/10.1007/s10973-023-12720-1 doi: 10.1007/s10973-023-12720-1
    [20] P. Srilatha, R. S. V. Kumar, R. N. Kumar, R. J. P. Gowda, A. Abdulrahman, B. C. Prasannakumara, Impact of solid-fluid interfacial layer and nanoparticle diameter on Maxwell nanofluid flow subjected to variable thermal conductivity and uniform magnetic field, Heliyon, 9 (2023), e21189. https://doi.org/10.1016/j.heliyon.2023.e21189 doi: 10.1016/j.heliyon.2023.e21189
    [21] F. Selimefendigil, H. F. Oztop, A. J. Chamkha, Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall, J. Therm. Anal. Calorim., 135 (2019), 1577–1594. https://doi.org/10.1007/s10973-018-7714-9 doi: 10.1007/s10973-018-7714-9
    [22] R. S. V. Kumar, I. E. Sarris, G. Sowmya, J. K. Madhukesh, B. C. Prasannakumara, Effect of electromagnetic field on the thermal performance of longitudinal trapezoidal porous fin using DTM–Pade approximant, Heat Transf., 51 (2022), 3313–3333. https://doi.org/10.1002/htj.22450 doi: 10.1002/htj.22450
    [23] Y. J. Wei, A. Rabinovich, The inverse problem of permeability identification for multiphase flow in porous media, Phys. Fluids, 35 (2023), 073327. https://doi.org/10.1063/5.0153939 doi: 10.1063/5.0153939
    [24] B. Jadamba, A. A. Khan, M. Sama, H. J. Starkloff, C. Tammer, A convex optimization framework for the inverse problem of identifying a random parameter in a stochastic partial differential equation, SIAM/ASA J. Uncertain., 9 (2021), 922–952. https://doi.org/10.1137/20M132395 doi: 10.1137/20M132395
    [25] T. Liu, Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation, J. Comput. Appl. Math., 413 (2022), 114393. https://doi.org/10.1016/j.cam.2022.114393 doi: 10.1016/j.cam.2022.114393
    [26] B. Li, T. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative, Fractals, 31 (2023), 2350050. https://doi.org/10.1142/S0218348X23500500 doi: 10.1142/S0218348X23500500
    [27] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [28] X. Jiang, J. Li, B. Li, W. Yin, L. Sun, X. Chen, Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system, Int. J. Nonlin. Sci. Numer. Simul., 24 (2023), 2639–2648. https://doi.org/10.1515/ijnsns-2021-0393 doi: 10.1515/ijnsns-2021-0393
    [29] D. Baleanu, B. Agheli, M. M. Al Qurashi, Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives, Adv. Mech. Eng., 2016. https://doi.org/10.1177/1687814016683305 doi: 10.1177/1687814016683305
    [30] I. A. Mirza, D. Vieru, Fundamental solutions to advection–diffusion equation with time-fractional Caputo–Fabrizio derivative, Comput. Math. Appl., 73 (2017), 1–10. https://doi.org/10.1016/j.camwa.2016.09.026 doi: 10.1016/j.camwa.2016.09.026
    [31] H. Sun, X. Hao, Y. Zhang, D. Baleanu, Relaxation and diffusion models with non-singular kernels, Physica A Stat. Mech. Appl., 468 (2017), 590–596. https://doi.org/10.1016/j.physa.2016.10.066 doi: 10.1016/j.physa.2016.10.066
    [32] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular Kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [33] X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Coke price prediction approach based on dense GRU and opposition-based learning salp swarm algorithm, Int. J. Bio-Inspir. Comput., 21 (2023), 106–121. https://doi.org/10.1504/IJBIC.2023.130549 doi: 10.1504/IJBIC.2023.130549
    [34] X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Ensemble classifier design based on perturbation binary salp swarm algorithm for classification, CMES-Comp. Model. Eng. Sci., 135 (2023), 653–671. https://doi.org/10.32604/cmes.2022.022985 doi: 10.32604/cmes.2022.022985
    [35] C. Kumar, P. Nimmy, K. V. Nagaraja, R. S. V. Kumar, A. Verma, S. Alkarni, et al., Analysis of heat transfer behavior of porous wavy fin with radiation and convection by using a machine learning technique, Symmetry, 15 (2023), 1601. https://doi.org/10.3390/sym15081601 doi: 10.3390/sym15081601
    [36] S. Jayan, K. V. Nagaraja, A general and effective numerical integration method to evaluate triple integrals using generalized Gaussian quadrature, Procedia Eng., 127 (2015), 1041–1047. https://doi.org/10.1016/j.proeng.2015.11.457 doi: 10.1016/j.proeng.2015.11.457
    [37] S. B. Prakash, K. Chandan, K. Karthik, S. Devanathan, R. S. V. Kumar, K. V. Nagaraja, et al., Investigation of the thermal analysis of a wavy fin with radiation impact: an application of extreme learning machine, Phys. Scr., 99 (2023), 015225. https://doi.org/10.1088/1402-4896/ad131f doi: 10.1088/1402-4896/ad131f
    [38] O. J. J. Algahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos Soliton. Fract., 89 (2016), 552–559. https://doi.org/10.1016/j.chaos.2016.03.026 doi: 10.1016/j.chaos.2016.03.026
    [39] R. S. V. Kumar, M. D. Alsulami, I. E. Sarris, B. C. Prasannakumara, S. Rana, Backpropagated neural network modeling for the non-fourier thermal analysis of a moving plate, Mathematics, 11 (2023), 438. https://doi.org/10.3390/math11020438 doi: 10.3390/math11020438
    [40] S. M. Hussain, R. Mahat, N. M. Katbar, I. Ullah, R. S. V. Kumar, B. C. Prasannakumara, et al., Artificial neural network modeling of mixed convection viscoelastic hybrid nanofluid across a circular cylinder with radiation effect: Case study, Case Stud. Therm. Eng., 50 (2023), 103487. https://doi.org/10.1016/j.csite.2023.103487 doi: 10.1016/j.csite.2023.103487
    [41] W. Waseem, M. Sulaiman, S. Islam, P. Kumam, R. Nawaz, M. A. Z. Raja, et al., A study of changes in temperature profile of porous fin model using cuckoo search algorithm, Alex. Eng. J., 59 (2020), 11–24. https://doi.org/10.1016/j.aej.2019.12.001 doi: 10.1016/j.aej.2019.12.001
    [42] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [43] F. Wang, R. S. V. Kumar, G. Sowmya, E. R. El-Zahar, B. C. Prasannakumara, M. I. Khan, et al., LSM and DTM-Pade approximation for the combined impacts of convective and radiative heat transfer on an inclined porous longitudinal fin, Case Stud. Therm. Eng., 35 (2022), 101846. https://doi.org/10.1016/j.csite.2022.101846 doi: 10.1016/j.csite.2022.101846
    [44] K. R. Madhura, B. G. Kalpana, O. D. Makinde, Thermal performance of straight porous fin with variable thermal conductivity under magnetic field and radiation effects, Heat Transf., 49 (2020) 5002–5019. https://doi.org/10.1002/htj.21864 doi: 10.1002/htj.21864
    [45] P. L. Ndlovu, R. J. Moitsheki, Analysis of temperature distribution in radial moving fins with temperature dependent thermal conductivity and heat transfer coefficient, Int. J. Therm. Sci., 145 (2019), 106015. https://doi.org/10.1016/j.ijthermalsci.2019.106015 doi: 10.1016/j.ijthermalsci.2019.106015
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1178) PDF downloads(62) Cited by(3)

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog