Research article Special Issues

An artificial neural network analysis of the thermal distribution of a fractional-order radial porous fin influenced by an inclined magnetic field

  • Received: 08 February 2024 Revised: 18 March 2024 Accepted: 26 March 2024 Published: 15 April 2024
  • MSC : 35D40, 68T07

  • Fins and radial fins are essential elements in engineering applications, serving as critical components to optimize heat transfer and improve thermal management in a wide range of sectors. The thermal distribution within a radial porous fin was investigated in this study under steady-state conditions, with an emphasis on the impact of different factors. The introduction of an inclined magnetic field was investigated to assess the effects of convection and internal heat generation on the thermal behavior of the fin. The dimensionless form of the governing temperature equation was utilized to facilitate analysis. Numerical solutions were obtained through the implementation of the Hybrid Cuckoo Search Algorithm-based Artificial Neural Network (HCS-ANN). The Hartmann number (M) and the Convection-Conduction parameter (Nc) were utilized in the evaluation of heat transfer efficiency. Enhanced efficiency, as evidenced by decreased temperature and enhanced heat removal, was correlated with higher values of these parameters. Residual errors for both M and Nc were contained within a specified range of $ 10^{-6} $ to $ 10^{-14} $, thereby offering a quantitative assessment of the model's accuracy. As a crucial instrument for assessing the performance and dependability of predictive models, the residual analysis highlighted the impact of fractional orders on temperature fluctuations. As the Hartmann number increased, the rate of heat transfer accelerated, demonstrating the magnetic field's inhibitory effect on convection heat transport, according to the study. The complex relationship among Nc, fractional order (BETA), and temperature was underscored, which motivated additional research to improve our comprehension of the intricate physical mechanisms involved. This study enhanced the overall understanding of thermal dynamics in radial porous fins, providing significant implications for a wide array of applications, including aerospace systems and heat exchangers.

    Citation: M. A. El-Shorbagy, Waseem, Mati ur Rahman, Hossam A. Nabwey, Shazia Habib. An artificial neural network analysis of the thermal distribution of a fractional-order radial porous fin influenced by an inclined magnetic field[J]. AIMS Mathematics, 2024, 9(6): 13659-13688. doi: 10.3934/math.2024667

    Related Papers:

  • Fins and radial fins are essential elements in engineering applications, serving as critical components to optimize heat transfer and improve thermal management in a wide range of sectors. The thermal distribution within a radial porous fin was investigated in this study under steady-state conditions, with an emphasis on the impact of different factors. The introduction of an inclined magnetic field was investigated to assess the effects of convection and internal heat generation on the thermal behavior of the fin. The dimensionless form of the governing temperature equation was utilized to facilitate analysis. Numerical solutions were obtained through the implementation of the Hybrid Cuckoo Search Algorithm-based Artificial Neural Network (HCS-ANN). The Hartmann number (M) and the Convection-Conduction parameter (Nc) were utilized in the evaluation of heat transfer efficiency. Enhanced efficiency, as evidenced by decreased temperature and enhanced heat removal, was correlated with higher values of these parameters. Residual errors for both M and Nc were contained within a specified range of $ 10^{-6} $ to $ 10^{-14} $, thereby offering a quantitative assessment of the model's accuracy. As a crucial instrument for assessing the performance and dependability of predictive models, the residual analysis highlighted the impact of fractional orders on temperature fluctuations. As the Hartmann number increased, the rate of heat transfer accelerated, demonstrating the magnetic field's inhibitory effect on convection heat transport, according to the study. The complex relationship among Nc, fractional order (BETA), and temperature was underscored, which motivated additional research to improve our comprehension of the intricate physical mechanisms involved. This study enhanced the overall understanding of thermal dynamics in radial porous fins, providing significant implications for a wide array of applications, including aerospace systems and heat exchangers.



    加载中


    [1] M. S. Arif, M. Jhangir, Y. Nawaz, I. Abbas, K. Abodayeh, A. Ejaz, Numerical study for magnetohydrodynamic (MHD) unsteady Maxwell nanofluid flow impinging on heated stretching sheet, Comp. Model. Eng. Sci., 133 (2022), 303–325. https://doi.org/10.32604/cmes.2022.020979 doi: 10.32604/cmes.2022.020979
    [2] A. Ejaz, Y. Nawaz, M. S. Arif, D. S. Mashat, K. Abodayeh, Stability analysis of predator-prey system with consuming resource and disease in predator species, Comp. Model. Eng. Sci., 132 (2022), 489–506. https://doi.org/10.32604/cmes.2022.019440 doi: 10.32604/cmes.2022.019440
    [3] R. S. V. Kumar, G. Sowmya, R. Kumar, Execution of probabilists’ Hermite collocation method and regression approach for analyzing the thermal distribution in a porous radial fin with the effect of an inclined magnetic field, Eur. Phys. J. Plus, 138 (2023), 422. https://doi.org/10.1140/epjp/s13360-023-03986-3 doi: 10.1140/epjp/s13360-023-03986-3
    [4] U. Khan, R. N. Kumar, A. Zaib, B. C. Prasannakumara, A. Ishak, A. M. Galal, et al., Time-dependent flow of water-based ternary hybrid nanoparticles over a radially contracting/expanding and rotating permeable stretching sphere, Therm. Sci. Eng. Prog., 36 (2022), 101521. https://doi.org/10.1016/j.tsep.2022.101521 doi: 10.1016/j.tsep.2022.101521
    [5] S. Singh, D. Kumar, K. N. Rai, Analytical solution of Fourier and non-Fourier heat transfer in longitudinal fin with internal heat generation and periodic boundary condition, Int. J. Therm. Sci., 125 (2018), 166–175. https://doi.org/10.1016/j.ijthermalsci.2017.11.029 doi: 10.1016/j.ijthermalsci.2017.11.029
    [6] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Tran., 116 (2018), 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091
    [7] M. Alkasassbeh, Z. Omar, F. Mebarek‐Oudina, J. Raza, A. Chamkha, Heat transfer study of convective fin with temperature‐dependent internal heat generation by hybrid block method, Heat Transf.-Asian Res., 48 (2019), 1225–1244. https://doi.org/10.1002/htj.21428 doi: 10.1002/htj.21428
    [8] M. Kezzar, I. Tabet, M. R. Eid, A new analytical solution of longitudinal fin with variable heat generation and thermal conductivity using DRA, Eur. Phys. J. Plus, 135, (2020), 120. https://doi.org/10.1140/epjp/s13360-020-00206-0 doi: 10.1140/epjp/s13360-020-00206-0
    [9] S. Y. Kim, J. W. Paek, B. H. Kang, Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger, J. Heat Transfer., 122 (2000), 572–578. https://doi.org/10.1115/1.1287170 doi: 10.1115/1.1287170
    [10] M. Fathi, M. M. Heyhat, M. Z. Targhi, S. Bigham, Porous-fin microchannel heat sinks for future micro-electronics cooling, Int. J. Heat Mass Tran., 202 (2023), 123662. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123662 doi: 10.1016/j.ijheatmasstransfer.2022.123662
    [11] G. Sowmya, R. S. V. Kumar, Assessment of transient thermal distribution in a moving porous plate with temperature-dependent internal heat generation using Levenberg–Marquardt backpropagation neural network, Waves Random Complex, 2023, 1–21. https://doi.org/10.1080/17455030.2023.2198040 doi: 10.1080/17455030.2023.2198040
    [12] B. J. Gireesha, G. Sowmya, Heat transfer analysis of an inclined porous fin using differential transform method, Int. J. Ambient Energy, 43 (2022), 3189–3195. https://doi.org/10.1080/01430750.2020.1818619 doi: 10.1080/01430750.2020.1818619
    [13] J. Wang, Y. P. Xu, R. Qahiti, M. Jafaryar, M. A. Alazwari, N. H. Abu-Hamdeh, et al., Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability, J. Petrol. Sci. Eng., 208 (2022), 109734. https://doi.org/10.1016/j.petrol.2021.109734 doi: 10.1016/j.petrol.2021.109734
    [14] V. Venkitesh, A. Mallick, Thermal analysis of a convective–conductive–radiative annular porous fin with variable thermal parameters and internal heat generation, J. Therm. Anal. Calorim., 147 (2022), 1519–1533. https://doi.org/10.1007/s10973-020-10384-9 doi: 10.1007/s10973-020-10384-9
    [15] V. Venkitesh, A. Mallick, Thermal analysis of a convective–conductive–radiative annular porous fin with variable thermal parameters and internal heat generation, J. Therm. Anal. Calorim., 147 (2022), 1519–1533. https://doi.org/10.1007/s10973-020-10384-9 doi: 10.1007/s10973-020-10384-9
    [16] Z. U. Din, A. Ali, M. De la Sen, G. Zaman, Entropy generation from convective–radiative moving exponential porous fins with variable thermal conductivity and internal heat generations, Sci. Rep., 12 (2022), 1791. https://doi.org/10.1038/s41598-022-05507-1 doi: 10.1038/s41598-022-05507-1
    [17] R. S. V. Kumar, G. Sowmya, M. C. Jayaprakash, B. C. Prasannakumara, M. I. Khan, K. Guedri, et al., Assessment of thermal distribution through an inclined radiative-convective porous fin of concave profile using generalized residual power series method (GRPSM), Sci. Rep., 12 (2022), 13275. https://doi.org/10.1038/s41598-022-15396-z doi: 10.1038/s41598-022-15396-z
    [18] T. Cyriac, B. N. Hanumagowda, M. Umeshaiah, V. Kumar, J. S. Chohan, R. N. Kumar, et al., Performance of rough secant slider bearing lubricated with couple stress fluid in the presence of magnetic field, Mod. Phys. Lett. B, 2023, 2450140. https://doi.org/10.1142/S0217984924501409
    [19] G. Sharma, B. N. Hanumagowda, S. V. K. Varma, R. N. Kumar, A. S. Alqahtani, M. Y. Malik, Impact of magnetic field and nonlinear radiation on the flow of Brinkmann-type chemically reactive hybrid nanofluid: A numerical study, J. Therm. Anal. Calorim., 149 (2024), 745–759. https://doi.org/10.1007/s10973-023-12720-1 doi: 10.1007/s10973-023-12720-1
    [20] P. Srilatha, R. S. V. Kumar, R. N. Kumar, R. J. P. Gowda, A. Abdulrahman, B. C. Prasannakumara, Impact of solid-fluid interfacial layer and nanoparticle diameter on Maxwell nanofluid flow subjected to variable thermal conductivity and uniform magnetic field, Heliyon, 9 (2023), e21189. https://doi.org/10.1016/j.heliyon.2023.e21189 doi: 10.1016/j.heliyon.2023.e21189
    [21] F. Selimefendigil, H. F. Oztop, A. J. Chamkha, Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall, J. Therm. Anal. Calorim., 135 (2019), 1577–1594. https://doi.org/10.1007/s10973-018-7714-9 doi: 10.1007/s10973-018-7714-9
    [22] R. S. V. Kumar, I. E. Sarris, G. Sowmya, J. K. Madhukesh, B. C. Prasannakumara, Effect of electromagnetic field on the thermal performance of longitudinal trapezoidal porous fin using DTM–Pade approximant, Heat Transf., 51 (2022), 3313–3333. https://doi.org/10.1002/htj.22450 doi: 10.1002/htj.22450
    [23] Y. J. Wei, A. Rabinovich, The inverse problem of permeability identification for multiphase flow in porous media, Phys. Fluids, 35 (2023), 073327. https://doi.org/10.1063/5.0153939 doi: 10.1063/5.0153939
    [24] B. Jadamba, A. A. Khan, M. Sama, H. J. Starkloff, C. Tammer, A convex optimization framework for the inverse problem of identifying a random parameter in a stochastic partial differential equation, SIAM/ASA J. Uncertain., 9 (2021), 922–952. https://doi.org/10.1137/20M132395 doi: 10.1137/20M132395
    [25] T. Liu, Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation, J. Comput. Appl. Math., 413 (2022), 114393. https://doi.org/10.1016/j.cam.2022.114393 doi: 10.1016/j.cam.2022.114393
    [26] B. Li, T. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative, Fractals, 31 (2023), 2350050. https://doi.org/10.1142/S0218348X23500500 doi: 10.1142/S0218348X23500500
    [27] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [28] X. Jiang, J. Li, B. Li, W. Yin, L. Sun, X. Chen, Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system, Int. J. Nonlin. Sci. Numer. Simul., 24 (2023), 2639–2648. https://doi.org/10.1515/ijnsns-2021-0393 doi: 10.1515/ijnsns-2021-0393
    [29] D. Baleanu, B. Agheli, M. M. Al Qurashi, Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives, Adv. Mech. Eng., 2016. https://doi.org/10.1177/1687814016683305 doi: 10.1177/1687814016683305
    [30] I. A. Mirza, D. Vieru, Fundamental solutions to advection–diffusion equation with time-fractional Caputo–Fabrizio derivative, Comput. Math. Appl., 73 (2017), 1–10. https://doi.org/10.1016/j.camwa.2016.09.026 doi: 10.1016/j.camwa.2016.09.026
    [31] H. Sun, X. Hao, Y. Zhang, D. Baleanu, Relaxation and diffusion models with non-singular kernels, Physica A Stat. Mech. Appl., 468 (2017), 590–596. https://doi.org/10.1016/j.physa.2016.10.066 doi: 10.1016/j.physa.2016.10.066
    [32] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular Kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [33] X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Coke price prediction approach based on dense GRU and opposition-based learning salp swarm algorithm, Int. J. Bio-Inspir. Comput., 21 (2023), 106–121. https://doi.org/10.1504/IJBIC.2023.130549 doi: 10.1504/IJBIC.2023.130549
    [34] X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Ensemble classifier design based on perturbation binary salp swarm algorithm for classification, CMES-Comp. Model. Eng. Sci., 135 (2023), 653–671. https://doi.org/10.32604/cmes.2022.022985 doi: 10.32604/cmes.2022.022985
    [35] C. Kumar, P. Nimmy, K. V. Nagaraja, R. S. V. Kumar, A. Verma, S. Alkarni, et al., Analysis of heat transfer behavior of porous wavy fin with radiation and convection by using a machine learning technique, Symmetry, 15 (2023), 1601. https://doi.org/10.3390/sym15081601 doi: 10.3390/sym15081601
    [36] S. Jayan, K. V. Nagaraja, A general and effective numerical integration method to evaluate triple integrals using generalized Gaussian quadrature, Procedia Eng., 127 (2015), 1041–1047. https://doi.org/10.1016/j.proeng.2015.11.457 doi: 10.1016/j.proeng.2015.11.457
    [37] S. B. Prakash, K. Chandan, K. Karthik, S. Devanathan, R. S. V. Kumar, K. V. Nagaraja, et al., Investigation of the thermal analysis of a wavy fin with radiation impact: an application of extreme learning machine, Phys. Scr., 99 (2023), 015225. https://doi.org/10.1088/1402-4896/ad131f doi: 10.1088/1402-4896/ad131f
    [38] O. J. J. Algahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos Soliton. Fract., 89 (2016), 552–559. https://doi.org/10.1016/j.chaos.2016.03.026 doi: 10.1016/j.chaos.2016.03.026
    [39] R. S. V. Kumar, M. D. Alsulami, I. E. Sarris, B. C. Prasannakumara, S. Rana, Backpropagated neural network modeling for the non-fourier thermal analysis of a moving plate, Mathematics, 11 (2023), 438. https://doi.org/10.3390/math11020438 doi: 10.3390/math11020438
    [40] S. M. Hussain, R. Mahat, N. M. Katbar, I. Ullah, R. S. V. Kumar, B. C. Prasannakumara, et al., Artificial neural network modeling of mixed convection viscoelastic hybrid nanofluid across a circular cylinder with radiation effect: Case study, Case Stud. Therm. Eng., 50 (2023), 103487. https://doi.org/10.1016/j.csite.2023.103487 doi: 10.1016/j.csite.2023.103487
    [41] W. Waseem, M. Sulaiman, S. Islam, P. Kumam, R. Nawaz, M. A. Z. Raja, et al., A study of changes in temperature profile of porous fin model using cuckoo search algorithm, Alex. Eng. J., 59 (2020), 11–24. https://doi.org/10.1016/j.aej.2019.12.001 doi: 10.1016/j.aej.2019.12.001
    [42] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [43] F. Wang, R. S. V. Kumar, G. Sowmya, E. R. El-Zahar, B. C. Prasannakumara, M. I. Khan, et al., LSM and DTM-Pade approximation for the combined impacts of convective and radiative heat transfer on an inclined porous longitudinal fin, Case Stud. Therm. Eng., 35 (2022), 101846. https://doi.org/10.1016/j.csite.2022.101846 doi: 10.1016/j.csite.2022.101846
    [44] K. R. Madhura, B. G. Kalpana, O. D. Makinde, Thermal performance of straight porous fin with variable thermal conductivity under magnetic field and radiation effects, Heat Transf., 49 (2020) 5002–5019. https://doi.org/10.1002/htj.21864 doi: 10.1002/htj.21864
    [45] P. L. Ndlovu, R. J. Moitsheki, Analysis of temperature distribution in radial moving fins with temperature dependent thermal conductivity and heat transfer coefficient, Int. J. Therm. Sci., 145 (2019), 106015. https://doi.org/10.1016/j.ijthermalsci.2019.106015 doi: 10.1016/j.ijthermalsci.2019.106015
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(858) PDF downloads(56) Cited by(1)

Article outline

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog