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Abstract: Fins and radial fins are essential elements in engineering applications, serving as critical
components to optimize heat transfer and improve thermal management in a wide range of sectors.
The thermal distribution within a radial porous fin was investigated in this study under steady-state
conditions, with an emphasis on the impact of different factors. The introduction of an inclined
magnetic field was investigated to assess the effects of convection and internal heat generation on the
thermal behavior of the fin. The dimensionless form of the governing temperature equation was
utilized to facilitate analysis. Numerical solutions were obtained through the implementation of the
Hybrid Cuckoo Search Algorithm-based Artificial Neural Network (HCS-ANN). The Hartmann
number (M) and the Convection-Conduction parameter (Nc) were utilized in the evaluation of heat
transfer efficiency. Enhanced efficiency, as evidenced by decreased temperature and enhanced heat
removal, was correlated with higher values of these parameters. Residual errors for both M and Nc
were contained within a specified range of 10−6 to 10−14, thereby offering a quantitative assessment of
the model’s accuracy. As a crucial instrument for assessing the performance and dependability of
predictive models, the residual analysis highlighted the impact of fractional orders on temperature
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fluctuations. As the Hartmann number increased, the rate of heat transfer accelerated, demonstrating
the magnetic field’s inhibitory effect on convection heat transport, according to the study. The
complex relationship among Nc, fractional order (BETA), and temperature was underscored, which
motivated additional research to improve our comprehension of the intricate physical mechanisms
involved. This study enhanced the overall understanding of thermal dynamics in radial porous fins,
providing significant implications for a wide array of applications, including aerospace systems and
heat exchangers.

Keywords: shear rate dependent viscosity; thermal enhancement; Sisko fluid; numerical solution;
artificial neural network; hybrid Cuckoo search
Mathematics Subject Classification: 35D40, 68T07

1. Introduction

There has been a rise in recent years in the importance of enhancing thermal transmission
capacities in high-tech production settings. Conventional methods of heat transmission, which rely on
base liquids including water, ethylene glycol, oil, and petroleum, struggle to attain ideal heat
exchange rates due to their low thermal conductivity. Researchers have been concentrating on
improving heat conductivity using nanoliquids as a means of getting around this problem. When
nanoparticles are dispersed in a base fluid, a nanofluid is created with superior thermophysical
characteristics to hydrogels. Due to their superior thermal qualities, they have replaced traditional
coolants in radiators, electronic coolers, and heat exchangers.

In an effort to comprehend the complexities of heat transfer, a multitude of scholars have
investigated the behavior of nanoliquids as they traverse a variety of geometries, taking into account a
multitude of consequential factors [1–4]. Furthermore, there has been an increase in the strategic
implementation of extended surfaces, also referred to as fins, to enhance heat dissipation from a
heated surface via convective, radiative, or convective–radiative mechanisms. The thermal behavior of
fins is of the utmost importance in a wide range of applications, such as circuit board cooling, heat
exchangers, heat-rejection mechanisms in spacecraft, and electronic component cooling systems. In
addition to their traditional uses, fins have demonstrated their effectiveness in a wide range of
contexts.

An exhaustive review of the relevant literature reveals that thermal analysis of various fin designs
has been the subject of an abundance of research [5–8]. The aforementioned collection of research
highlights the importance of fins in enhancing the efficiency of heat dissipation mechanisms,
providing valuable perspectives on the complex interaction between nanofluids and fin configurations.
The ongoing pursuit of improvements in heat transmission has generated significant interest in the
potential of integrating nanofluids and novel fin designs to advance thermal management in a wide
range of industrial and technological contexts. In numerous industrial contexts, fin designers strive to
optimize thermal transfer while reducing fin size and cost, with a specific emphasis on refrigeration,
air conditioning, and the chilling of technical devices. The regulation of thermal management systems
by fins guarantees their long lifespan and optimal performance. The examination of heat transport
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mechanisms in fins, with a specific focus on radially structured fins, is of paramount importance in the
pursuit of technologically sophisticated and economically viable engineering solutions. The findings
of these inquiries indicate promise for real-world applications in which efficient heat dissipation is a
critical component, affecting the environmental sustainability and overall performance of diverse
technical systems. Kim et al. [9] studied the impact of porous fins on heat transfer and pressure
reduction in plate-fin heat exchangers, finding that permeability and porosity significantly affect
friction and heat transfer rate. Fathi et al. [10] found porous-fin microchannels better than solid-fin
microchannels when channel height is low. Sowmya et al. [11] studied the temperature distribution in
a porous plate under convection, radiation, and internal heat generation conditions. Gireesha et
al. [12] assessed thermal characteristics of inclined porous fins, while Wang et al. [13] found metallic
foam heat sinks have enhanced cooling capabilities.

In recent times, there has been a marked emphasis in the field of thermal engineering on improving
heat transmission within porous media, owing to their remarkable dense thermal conductivities.
Utilizing porous media, which provide a considerable surface area for heat transfer, can substantially
enhance the efficiency of heat exchange apparatus. The optimization of convective heat transfer,
which finds utility in combustion chambers, catalysts, and electronic component cooling, has been the
subject of extensive research. Further investigations are being conducted to determine the effects of
porous media on fins, which may result in improved heat dissipation for a variety of applications.
Kumar et al. [3] study on radial porous fin thermal distribution found optimal heat transfer through
thermal convection and an inclined magnetic field. The study also revealed that variations in magnetic
field angle increased heat transfer rate while decreasing temperature. The combined efforts of the
researchers [14–16] make a substantial contribution to the overall comprehension of thermal
dynamics and entropy factors in various configurations of permeable fins. The inquiries considered
various influential factors, such as magnetic forces, radiation, convection, and internal heat
generation, thereby enhancing comprehension of heat transfer phenomena occurring within porous
structures. The influence of a magnetic field is pervasive throughout an array of technological
domains, including but not limited to metal casting, molten metal purification, and nuclear reactor
coolant. The strategic utilization of an external magnetic field becomes a potent instrument for
controlling convective heat transfer rates within the domain of thermal engineering. As a result,
extended scholarly interest has been devoted to the examination of the impact of magnetic fields,
which has generated an abundance of publications detailing the profound consequences of magnetic
forces on fin heat transmission [17–19]. This collection of research not only enhances our
fundamental comprehension of heat transfer phenomena but also demonstrates the adaptability and
influence of magnetic fields in advancing thermal engineering technologies in a variety of applications
where controlled heat manipulation is of the utmost importance. Selimefendigil et al. [20]
investigated the effects of a magnetic field and an elastic fin on the dynamics of phase change within a
cylindrical reactor embedded with a PCM-packed bed. The efficacy of the magnetic field was
observed across various fin diameters and vertical orientations. Kumar et al. [21] studied the effect of
an internal heat source and an electromagnetic field on the thermal distribution over a longitudinal
trapezoidal porous fin. The fractional arrangement Operating (ODEs) and (PDEs) play a vital role in
the fields of fluid mechanics and engineering by offering precise depictions of intricate phenomena
such as those occurring in porous media, shallow water dynamics, heat transfer enhancement,
biomedical fluid dynamics, hydrodynamic stability analysis, optimization of fluid transport systems,
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modeling of oil reservoirs, aerodynamics, and aircraft design. The methods used for the porous fin
problems have been investigated by researchers by applying different techniques, such as multigrid
method, multigrid-homotopy method, and wavelet multiscale method, have recently been applied to
many practical application problems, such as [22–24]. The comprehension of all the above are
facilitated by these equations. Their significance and adaptability in these domains attest to their
substantial contribution to the progression of knowledge and capacities in the disciplines of fluid
mechanics and engineering. Derivatives and integrals of fractional orders have undergone substantial
advancements over the last ten years, as supported by an abundance of scholarly monographs and
research papers devoted to the subject. A multitude of mathematical models that incorporate
fractional calculus have been investigated across disciplines, including epidemiology,
differential-difference equations, vibration equations, and heat transfer, among others [25–27]. In a
recent publication [28–31], Caputo and Fabrizio presented a fractional derivative that holds significant
utility in elucidating mechanical phenomena such as damage, wear, plasticity, and electromagnetic
hysteresis. This novel derivative is especially well-suited for processes that do not need these effects.
In order to comprehend groundwater flow, reaction-diffusion equations, and nonlinear models,
scientists have implemented this derivative. Moreover, in various scientific domains, alternative
fractional derivatives utilizing non-singular kernels have been suggested and implemented,
demonstrating the adaptability and practicality of these mathematical principles [32, 33].

Within the domains of engineering and fluid mechanics, artificial neural networks (ANNs)
function as essential instruments that find extensive utility. ANNs are utilized extensively in materials
science, computational fluid dynamics (CFD), pattern recognition, predictive modeling, control
systems, fault detection, optimization, fluid flow modeling, turbulence modeling, and heat transfer
analysis. By extracting features from sensor data or images, these devices enable the classification of
data points; they can also predict complex system behaviors, control parameters, identify abnormal
behavior or defects, optimize engineering processes, and forecast material properties. Artificial neural
networks (ANNs) are of great significance in tackling intricate problems in various engineering
fields [34–36]. They provide a resilient and adaptable methodology for examining, representing, and
enhancing complex systems and procedures. Scholars [37–39] have investigated non-Fourier irregular
heat transfer in a trapezoidal porous fin, transient thermal dispersion in a moving plate, and the
influence of radiation on nanofluid mixed convection in a circular cylinder by employing the
Levenberg-Marquardt backpropagation artificial neural network technique. The results of this study
underscore the efficacy of incorporating artificial neural networks into diverse heat transfer models.
The material properties of rectangular porous fins were analyzed by Waseem et al. [40] using a neural
computer model and a metaheuristic technique. They used the Cuckoo search method to find the
optimal temperature profile for the process. They also analyzed a convective straight fin with
fractional order and thermal conductivity variables.

As for the novelty of this manuscript, by acknowledging the critical nature of heat transfer and the
difficulties that accompany it, we present an innovative fractional model for the energy balance
equation that integrates the recently developed Caputo-Fabrizio fractional derivative. The purpose of
this model is to assess the performance of convective radial fins, which possess the thermal
conductivity that varies with temperature. In order to tackle the complexities presented by the
fractional order energy balance equation, we employ a novel methodology that integrates the
state-of-the-art Cuckoo search algorithm with unsupervised ANN. This advancement signifies a new
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and unique contribution to the discipline, as it establishes a foundation for subsequent efforts to
resolve complex fractional order nonlinear partial differential equations (PDEs) by utilizing this
hybrid ANN-based cuckoo search method. By employing this technique, it becomes possible to
investigate and assess the temperature distribution and temperature at the tips of convective radial fins
that possess thermal conductivity. This provides significant knowledge even when subjected to
conditions of varying physical parameters. By combining unsupervised ANNs with the cuckoo search
algorithm, the fractional order energy balance equation not only gives us better performance but also a
new concept for complex problems in heat transfer and related domains. Significantly superior to
traditional analytical methods, this hybrid scheme reduces computation time and data requirements in
comparison to supervised ANN, thereby offering a more effective resolution for intricate heat transfer
challenges.

2. Basic definitions

There are several definitions of fractional integrals and derivatives in fractional calculus, including
Caputo, Riemann Liouville [41]. Following are some of the famous fractional integrals.

2.1. Definition

Suppose that θ ∈ H1(a, b), where a > b and β ∈ [0, 1] then, as per Caputo, we have

C
0 Dβ

ξθ(ξ) =
1

Γ(m − β)

∫ z

0
(ξ − τ)m−β−1[θ

′

(ξ)]dτ.

We utilized the Riemann-Liouville formulation of fractional derivatives with a lower terminal at
zero in our study. In the literature, the fractional order Riemann-Liouville derivative is defined as:

L
[RL

Dν f (t)
]

=
1

Γ(m − ν)
dm

dtm

∫ t

0

f (τ)
(t − τ)1+ν−m dτ(m − 1 < ν ≤ m), (2.1)

here, f is continuous, ν ∈ R, n ∈ N and Γ function is defined as under

Γ(x) =

∫ ∞

0
e−ttx−1,R(x) > 0. (2.2)

The Mittag-Leffler function (MLF) is significant. It has a wide range of applications in the field of
fractional calculus. Its significance is recognized when solving fractional-order differential equations.
Podlubny [41] provides the function with two arguments α and β as:

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
, (α > 0, β > 0), (2.3)

and when we take β = 1, we have the standard MLF function for one parameter.

3. Problem formulation

Figure 1 shows a schematic picture of a straight fin issue with an arbitrary cross-sectional area, Ac,
perimeter P, and length b. The fin is connected to the base surface with temperature, Tb, and extends
into fluid with temperature, Ta, with its tip insulated.
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Figure 1. Geometrical description of the problem.

The energy balance equation is thus expressed as follows:

qr − qdr = h∗(1 − ψ)(T − Ta)2πr + 2πrψ
ρcpgKγ

v f
(T − Ta)2 +

J2
c

σ
2πrt − 2πrtQ∗, (3.1)

here Eq (3.1), q denotes the rate of heat transfer which is governed by the Fourier’s law of heat
conduction which is stated as follows:

qr = −2πrtke f f dT/dr, (3.2)

calculating Eqs (3.1) and (3.2), the following relation is obtained:

d
dr

(
2πrtke f f

dT
dr

)
= h∗(1 − ψ)(T − Ta)2πr + 2πrψ

ρcpgKγ
v f

(T − Ta)2 +
J2

c

σ
2πrt − 2πrtQ∗. (3.3)

In the above Eq (3.3), r and ψ represents the fin radius and porosity and the temperature dependent
terms Q∗ and h∗ are denoted as [42]:

Q∗(T ) = Qq[1 + λ(T − Ta)],

h∗(T ) = hb

[ T − Ta

Tb − Ta

]p

.
(3.4)

When applied at an angle of α, an inclined magnetic field with strength B0 has the following
mathematical expression [43]:

J2
c

σ
= σB2

0 sin2(α)u2. (3.5)

The above Eq (3.3) can be defined as follows by applying the preceding equations:

d
dr

(
2πrtke f f

dT
dr

)
− h∗(1 − ψ)(T − Ta)2πr − 2πrψρcpgKγ

v f
(T − Ta)2

−2πrtσB2
0 sin2(α)u2

[
T−Ta
Tb−Ta

]p

+ 2πrtQ∗. (3.6)
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Additionally, the fin’s energy transfer equation (Eq (3.6)) has the following boundary
constraints [44]:

T (rb) = Tb,

dT
dr r=rt

= 0.
(3.7)

The following similarity phrases are required for the suggested problem:

Θ =
T
Tb
, Θa =

Ta

Tb
, ω = λ(Tb), R =

r
rb
,NC =

hbr2
b

ke f f t
, M =

σB2
0u2r2

b

ke f f (Tb − Ta)
,

Q =
Qar2

B

ke f f Tb
, S H =

ρcpgKβr2
bTb

v f tke f f
.

(3.8)

Using the appropriate similarity terms mentioned above, we obtain the dimensionless form of
Eq (3.6):

1
X

d
dX

(
X

dΘ

dX

)
− Nc(1 − ϕ)

(Θ − Θa)p+1

(1 − Θa)p − S Hϕ (Θ − Θa)2

− M sin2(α) (Θ − Θa) + Q [1 + ω (Θ − Θa)] = 0,
(3.9)

together with the boundary conditions

dΘ(0)
dX

= 0, Θ(1) = 1, (3.10)

where X represent the dimensionless porous radius, the magnitude of p is picked between −3 and 3, as
it characterizes the mechanism of energy transfer in most significant applications, including material
processing, and nuclear reactions. Since, we know that integer order derivatives are local in nature,
these derivatives cannot correctly characterize the situation. Because its kernel is non-local and non-
singular, the Riemann-Liouville fractional derivative is more suited to describing natural occurrences.
As a result, we substitute the second-order derivative in equation with the novel Riemann-Liouville
fractional derivative, and this Eq (3.9) changes to a fractional model of energy balance equation written
as:

1
X

dβ

dXβ

(
X

dΘ

dX

)
− Nc(1 − ϕ)

(Θ − Θa)p+1

(1 − Θa)p − S Hϕ (Θ − Θa)2

− M sin2(α) (Θ − Θa) + Q [1 + ω (Θ − Θa)] = 0.
(3.11)

While the boundary conditions remain the same.

4. Modeling with ANN and the optimization problem

The solutions to nonlinear problems are well studied in the literature, where various numerical and
semi-analytical techniques are explained. The purpose behind the approximation of a solution for a
mathematical relation is to find the best approximation that satisfies the given physical system more
closely. To achieve this, we need to consider an efficient optimization algorithm. For this purpose, we
introduce a feed-forward neural network approach for the fractional order problem (3.9) as follows:

θ̂(t) =

m∑
i=1

ξi

[
f (δit + βi)

]
, (4.1)
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dβθ̂(t)
dtβ

=

m∑
i=1

ξi
dβ

dtβ
[
f (δit + βi)

]
, (4.2)

here, δ, β, ξ are the ANN weights, m is the number of neurons, f (t) = exp(−t) is the sigmoid function,
and θ̂(t) is the approximate solution.

Based on the previous analysis, we assume an objective function E to reduce the L2 norm for
Eq (3.9). From above, we have

Minimize E = E1 + E2, (4.3)

where,

E1 = mean
[ 1
X

dβ

dXβ

X
dθ̂ j

dX

−Nc(1−ϕ)

(
θ̂ j − θ̂a j

)p+1(
1 − θ̂a j

)p − S Hϕ
(
θ̂ j − θ̂a j

)2
−M sin2(α)

(
θ̂ j − θ̂a j

)
+ Q

[
1 + ω

(
θ̂ j − θ̂a j

)] ]2
(4.4)

and
E2 = mean

[
(θ̂1 − 1)2 + (θ̂′0)2

]
. (4.5)

Here, ξ j = jh, θ̂ j = θ̂(ξ j),N = 1
h where h shows the step size and ξ ≥ 0. The whole mechanism of

ANN is described in Figure 2.

Figure 2. Geometrical description of the ANN for the fractional-order fin temperature model.

5. The Cuckoo search algorithm and its hybridization

As clear from the name Cuckoo, this algorithm uses the Cuckoo search (CS) strategy for finding
the nest to lay their eggs there. The total search process follows the Lévy flights and random search
approach. In some algorithms, like PSO and GA the local optima escapes, and the beauty of this search
is that the local optima can not be escaped.

This algorithm follows the given search path

zt+1
i − zt

i = αs ⊗ H
(
pa − ε

)
⊗

(
zt

j − zt
k

)
. (5.1)

The Lévy walk equation further enhances the global search for zt+1
i . Here, H(u) is the Heaviside

function,zt+1
i and zt

i are the two separate roots, pa represents the changing parameter, ε is the random
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variable, s > 0 is the size of the step taken, ⊗ is the element-wise product, and α is the scaling
parameter.

The CS algorithm can be further optimized with the Biogeography-based operator. In this
methodology, these modified operators are used to build a new optimal solution based on hybrid
Cuckoo search (HCS). In the search phase, the host bird is allowed to find the other Cuckoo eggs with
higher accuracy to remove the old or to adopt it based on the optimal condition. The total population
is again re-evaluated and the rate of emigration µ is chosen for each response. This rate can be defined
as:

Pµi =
ES i

M
, (5.2)

here, E = 1 shows the maximum rate of emigration and S i = MPI is the solution of the species chosen.
The total mechanism of the proposed methodology is explained in Figure 3.

Figure 3. Description of the work to execute the problem efficiently.
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6. Results and discussions

I) Variations of Fractional order β = (1, 0.9, 0.8, 0.7), Hartmann number M = (0, 1, 2) and
Temperature (θ(η)): Figures 4–7 (a) and (b). The parameters for the graphs in Figures 4–7 are kept as
M = (0, 1, 2), β = (1, 0.9, 0.8, 0.7), Q = 0.2, ω = 0.1, S H = 0.8,Θa = 0.2,Nc = 2, α = π/6. Varying
the values of M = (0, 1, 2) in each Figure 4–7 and every trial have 30 runs for a different fractional
order i-e for β = (1, 0.9, 0.8, 0.7), different in every case, while the other parameters remain constant
in each trial.
• Figure 4 (a) and (b)

The solution plot of the Hartmann number (M) and β = 1 and the non-dimensional temperature (θ)
is illustrated in Figure 4(a). a dimensionless parameter that defines the intensity of a magnetic field
that is exerted on a fluid with electrical conductivity. The graph demonstrates that as (M) increases,
there is a concomitant increase in temperature (θ). The observed outcome can be ascribed to the
Lorentz force produced by the magnetic field, which opposes the flow of the fluid and causes a rise in
temperature. Furthermore, the graph visually represents the progression of temperature (θ) in relation
to (M), underscoring that the Lorentz force becomes more pronounced as the strength of the magnetic
field increases. The plot was generated utilizing the Hybrid Cuckoo Search algorithm, which is a neural
network technique.
• The parameters for the graphs in Figures 4–7 are kept as β = (1, 0.9, 0.8, 0.7), Q = 0.2, ω = 0.1, S H =

0.8,Θa = 0.2,Nc = 2, α = π/6. Varying the values of M=0,1,2 in each Figures 4–7 and every trial have
30 runs for a different fractional order i-e for β = (1, 0.9, 0.8, 0.7), different in every case, while the
other parameters remain constant in each trial.

The visual depiction emphasizes the substantial influence that the Hartmann number has on the
temperature of the system. A stronger Lorentz force results from a more pronounced magnetic field,
which is denoted by an increased number (M). This force, which acts in opposition to the fluid’s flow,
causes the temperature to rise. The graph in Figure 4(b) depicts the residual errors that arise from
temperature variations for various values of M (0, 1, 2). The defects, which occur within a specified
range for every value of M, serve as an indication of the fractional order β residual in this case lie
between 10−9 and 10−14. Residual errors, also known as residuals, are mathematical or statistical
discrepancies that arise from the opposition between predicted and observed values.

The computation involves the subtraction of predicted values from observed values. Critical for
determining whether a model fits its data and for detecting patterns, trends, and outliers is residual
analysis. Residuals ought to be centered on zero and distributed at random, which would indicate
that the model has captured the underlying data patterns. In disciplines such as statistics, economics,
finance, and machine learning, residual analysis is utilized to assess the performance and dependability
of predictive models. The insights gained from this analysis regarding the behavior of the system and
the influence of fractional orders on temperature fluctuations are of great value.
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Figure 4. Graphical results obtained with variation in M = 0, 1, 2 with fractional-order β = 1.

• Figure 5 (a) and (b)
The relationship between the Hartmann number (M = 0, 1, 2) and the non-dimensional

temperature is depicted in the solution plot of Figure 5(a). This non-dimensional temperature
parameter defines the electrical conductivity-induced effect of a magnetic field on a fluid. The results
of the analysis underscore the significance of the Lorentz force in this phenomenon and the impact of
the Hartmann number on temperature, as illustrated by the Hybrid Cuckoo Search algorithm. The
implications of these findings f The temperature variation (θ) as the Hartmann number (M) increases
is graphically represented in the graph. An increase in the Hartmann number is correlated with a
proportional rise in temperature, as indicated by the observed trend. The observed behavior can be
ascribed to the Lorentz force produced by the magnetic field, which acts in opposition to the flow of
fluid and causes an increase in temperature. By generating the solution plot, the Hybrid Cuckoo
Search algorithm demonstrates its effectiveness in optimizing the system parameters. Using fractional
order β, the parameters for the diagrams in Figure 5(a) are maintained. By manipulating β from 1 to
0.9, the graph investigates the effect of fractional order on temperature (θ) in greater detail.

AIMS Mathematics Volume 9, Issue 6, 13659–13688.



13670

Significantly, a reduction in fractional order is accompanied by a corresponding decrease in
temperature, as is evident from Figure 5(a). The incremental improvement of values as β decreases
underscores the fractional order sensitivity of the system. In brief, the graph adeptly illustrates the
intricate relationship that exists among the Hartmann number, fractional order, and temperature with
respect to the influence of a magnetic field on a fluid system. The residual errors caused by
temperature variations for various M values are illustrated in Figure 5(b), which represent fractional
order defects. Mathematical or statistical disparities between predicted and observed values constitute
residuals. They ought to be random and equal to zero, which would indicate model accuracy. These
Residuals errors fall between 10−6 and 10−14 . In disciplines such as statistics, economics, finance, and
machine learning, residual analysis is utilized to evaluate the efficacy of predictive models and the
behavior of systems.
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Figure 5. Graphical results obtained with variation in M = 0, 1, 2 with fractional-order
β = 0.9.
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(f) Convergence plot of HCS-ANN

Figure 6. Graphical results obtained with variation in M = 0, 1, 2 with fractional-order
β = 0.8.

• Figure 6 (a) and (b)
This research investigates the correlation between non-dimensional temperature and the Hartmann

number (M = 0, 1, 2), with a particular emphasis on the Lorentz force and its influence on temperature,
shown in Figure 6(a). The efficacy of the Hybrid Cuckoo Search algorithm in identifying temperature
variation is demonstrated by its use in optimizing system parameters. The Figure 6(a), illustrates a
positive correlation between temperature and Hartmann number, which can be attributed to the Lorentz
force generated by the magnetic field. Additionally, the fractional order sensitivity of the system is
emphasized. The fractional order is employed to preserve the parameters of the diagrams shown in
Figure 6(a). By manipulating from 1 to 0.9 and then 0.8, the graph provides a more comprehensive
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examination of the impact that fractional order has on temperature (θ). Unsurprisingly, a decrease in
temperature corresponds to a reduction in fractional order, as illustrated in Figure 6(a).

Residual errors associated with temperature fluctuations for different values of M are illustrated in
Figure 6(b). Residuals are quantified as discrepancies from the anticipated values that fall within a
designated range. The residual errors are identified to be concentrated between 10−7 and 10−12. The
defined range facilitates comprehension of the extent to which actual values deviate from predictions.
Residuals function as a numerical indicator of the discrepancies that exist between anticipated and
realized values. Residuals are anticipated to be random and centered on zero in an accurate model,
signifying a negligible margin of error in the predictions. Its significance is paramount in assessing
the efficacy of predictive models and comprehending the behavior of systems. The residual errors
illustrated in Figure 6(b) provide significant insights into the fractional order defects that are linked to
fluctuations in temperature for various values of M. The range of residuals that has been established is
utilized to evaluate the precision of the predictive model and the magnitude of errors.
• Figure 7 (a) and (b)

A continuance of the fractional order reduction from β = 1 to β = 0.7 for different values of the
Hartmann number M is illustrated in Figure 7(a). As a consequence of this decrease, temperature
values are likewise reduced in comparison to the preceding three instances The reduction in fractional
order from β = 1 to β = 0.7, for M = 0, 1, and 2 is visually represented in Figure 7(a), The graph
visually represents the subsequent decrease in temperature measurements. The observed decrease in
value occurs at M = 0, 1, and 2, underscoring the impact that fractional order has on the temperature
response of the system. The graph highlights the degree of sensitivity that the system exhibits towards
fractional order alterations. Comprehending this sensitivity is of the utmost importance in order to
optimize system parameters and accurately forecast temperature fluctuations. This graphical
representation facilitates the understanding of the complex correlation between temperature, M
values, fractional order, and the former, thereby providing practitioners and researchers with valuable
insights for optimizing systems and fine-tuning parameters. Residual errors, shown in Figure 7(b),
which are measured as differences between expected and observed values, are critical for evaluating
the effectiveness of predictive models and comprehending the behavior of systems. The residual
errors are identified to be concentrated between 10−7 and 10−11. They are inter-concentrated. In an
accurate model, residuals are anticipated to be zero and at random, signifying a minimal margin of
error. The range of residuals is utilized to assess the precision and magnitude of the model’s error.

When the magnetic field angle varies, the Hartmann number rises and the rate of heat transfer
increases. A decrease in temperature results from increasing the Hartmann number from 2 to 3. As
M values increase, the magnetic influence and corresponding magnetization strength increase as well,
regulating convective heat transfer and increasing the fin’s average heat transmission. Moreover, the
buoyancy force is triggered by the magnetic field, which permits the fin to disperse additional heat.
Consequently, there is an acceleration of the heat transfer rate from the fin. The feature of thermal
distribution in the radial porous fin with and without magnetic field is exhibited in Figures 4–7. The
temperature distribution in the fin with a magnetic field inclined at an angle of π/6 is indicated by the
lower curve of the thermal profile, whereas the higher temperature curve is observed in the absence
of a magnetic field. This suggests that fins with an angled magnetic field transmit heat at a faster
rate. Additionally, there is a difference in these two curves. Physically, a magnetic field and the
magnetic force that it attracts restrict the convection heat transport process, increasing the average
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heat transmission through the fin. This relationship is applied in the construction of nuclear reactors,
where efficient heat removal is necessary to prevent overheating. The impact of the Hartmann number,
a fundamental feature of electrically conducting fluids used as reactor coolants, must be carefully
considered in the design of the cooling system to ensure the safe and effective operation of nuclear
reactors.
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(f) Convergence plot of HCS-ANN

Figure 7. Graphical results obtained with variation in M = 0, 1, 2, with fractional-order
β = 0.7.
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Figure 8. Graphical results obtained with variation in M = 0, 1, 2 with fractional-order β = 1.

II) The fitness curves for the HCS deep ANN are illustrated in Figures 4–7 (c)–(e). These curves
highlight the impact of the M Hartmann number on performance, with specific attention paid to M
values of zero, one, and two. The minimal fitness values are represented along the x-axis, whereas
the outcomes of 30 independent runs of HCS deep ANN are depicted on the y-axis. The focus of the
analysis is a fractional orders β = 1, 0.9, 0.8, 0.7.
Crucial observations:
•M = 0 and β = 1: Figure 4(c)

The fitness curve demonstrates variability spanning from −0.0015 to +0.0015, with its maximum
value occurring approximately 12 independent runs in advance. It then descends until it reaches a
stability at 0.0015. The HCS deep ANN exhibits remarkable performance even in the absence of the
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M Hartmann number and the fractional order β = 1.
•M = 1 and β = 1: Figure 4(d)

The fitness curve exhibits a conspicuous flattening in comparison to the condition where M=0,
which indicates a substantial influence of the M Hartmann number. It peaks around the tenth run
independently and then declines progressively. The presence of an optimal value for the M Hartmann
number indicates that it plays a pivotal role in optimizing the performance of the HCS deep ANN.
•M = 2 and β = 1: Figure 4(e)

The fitness curve exhibits a behavior that is flatter than that of M = 0 and M = 1. It reaches its
maximum after eight independent trials, after which it gradually decreases until it stabilizes at 0.02.
Although M = 2 is flatter than M = 0 and M = 1, its fitness is marginally lower, highlighting the subtle
influence of the M Hartmann number.

In conclusion, the aforementioned observations highlight the performance of the HCS deep ANN
being highly susceptible to fluctuations in the M Hartmann number. The results of the analysis indicate
the presence of an ideal M value, and the fractional order (β) remains unchanged at 1 for the duration
of the investigations.
•M = 0 and β = 0.9: Figure 5(c)

A dynamic pattern is observed in the fitness curve for M=0 and β = 0.9. It fluctuates initially
between −6 × 10−5 and −7 × 10−5, peaking after 12 independent cycles. Following this, a significant
decrease occurs, culminating in a value of −7× 10−5 for β = 0.9, which signifies resilient performance
even in the absence of the M Hartmann number. This implies that the HCS deep ANN attains an
impressive level of fitness that is not influenced by the M Hartmann number.
• The fitness curve for the conditions M = 1 and β = 0.9 shown in Figure 5(d), exhibits a significant
enhancement in comparison to the curve for M = 0. Following the attainment of the peak after
approximately 12 independent trials, the curve begins to decline. The values fall between −5 × 10−5

and 6 × 10−5. The fitness values, demonstrate the influence of M=1 and the importance of the
fractional order β = 0.9. The possibility of an optimal M Hartmann number in this particular situation
is indicated by the decrease in fitness subsequent to attaining the maximum.
•M = 2 and β = 0.9: Figure 5(e)

The fitness curve for M = 2 and β = 0.9 is marginally inferior to those for M = 0 and M = 1.
The value reaches its maximum after nine distinct iterations, after which it descends. For M = 2 and
β = 0.9, the fitness values fall within the interval of −1 × 10−6 and 5 × 10−6, suggesting an enhanced
level of performance in comparison to alternative situations.

The decrease in value signifies the attainment of a stable solution, demonstrating enhanced
performance for the particular amalgamation of the M Hartmann number and fractional order. In
brief, the fitness curves demonstrate the degree of responsiveness of the HCS deep ANN algorithm to
variations in the M Hartmann number and β values. This underscores the importance of investigating
optimal configurations in order to enhance performance when addressing the provided problem. The
fitness curves presented in Figure 6 (c)–(e) offer an exhaustive depiction of the behavior of the
HCS-ANN algorithm in various M Hartmann number scenarios.
Figure 6 (c)–(e): Evaluation •M = 0 and β = 0.8: Figure 6(c)

In the absence of M. Hartmann, the robustness fitness curve exhibits a dynamic pattern, reaching
its maximum after approximately 9 independent trials, shown in (Figure 6(c)). The dynamic nature
of the algorithm is underscored by the fitness values that span the range of and. Notwithstanding in
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the absence of the M Hartmann number, the algorithm exhibits remarkable robustness by sustaining a
significant level of fitness. The range of fitness values is from 1× 10−6 and 1.5× 10−6. It is noteworthy
that the algorithm retains a substantial degree of fitness despite the absence of the M Hartmann number,
which demonstrates its resilience.
•M = 1 and β = 0.8: Figure 6(d)

When M = 1 and β = 0.8, the fitness curve reaches its maximum after approximately 11 independent
trials, shown in Figure 6(d), which is greater than that of M=0. By situating the fitness values between
−6 × 10−5 and 7 × 10−5, one can discern that the implementation of the M Hartmann number has
enhanced the algorithm’s performance. In contrast to M=0, the curve’s flattened profile indicates
a more secure convergence. A post-peak decline indicates that the M Hartmann number has been
searched for its optimal value, demonstrating that it has a substantial impact on the efficiency of the
algorithm.
•M = 2 and β = 0.8: Figure 6(e).

When M = 2 and β = 0.8 Following nine independent trials, the fitness curve for M = 2 attains its
optimum value. The fitness values, which lie between 1.5 × 10−4 and −1 × 10−4 exhibit superior
performance compared to M=0 and M=1. This particular situation exemplifies the HCS-ANN
algorithm at its highest level of performance; the efficacy is significantly enhanced by combining
M=2 with the fractional order β = 0.8. Figure 6 (e) illustrates enhanced performance (M = 2, and
β = 0.8 ) i-e After nine independent trials, the fitness curve for M = 2 reaches its maximum,
surpassing the performance of M = 0 and M = 1.
Figures 7 (c)–(e): Evaluation

The fitness curves depicted in Figure 7 (c)–(e) offer significant insights regarding the HCS-ANN
algorithm’s performance across various scenarios in which the M Hartmann number is involved.
• Figure 7(c) illustrates the robustness when M Hartmann is absent (M = 0 and β = 0.7 ):

The fitness curve for M=0 exhibits a dynamic pattern, with its optimum value being attained after
approximately nine independent trials. The robustness of the algorithm is underscored by the fitness
values, which span from −2× 10−6 to 4.5× 10−6 , even in the absence of the M Hartmann number. The
dynamic pattern indicates that the algorithm is robust, as it can adapt to a variety of conditions.
•M = 1 and β = 0.7: Figure 7(d)

The fitness curve reaches its optimum after approximately 12 independent trials for M = 1,
surpassing that of M=0. Fitness values are typically observed between −3 × 10−4 to 4 × 10−10 , with a
more gradual curve indicating a state of stability. The decline that occurs after the peak indicates that
the M Hartmann number influenced an optimal value pursuit, demonstrating the algorithm’s
sensitivity to parameter variations. • Increased Performance (M = 2 and β = 0.7): Figure 7(e) The
fitness curve for M = 2 reaches its optimum after 12 independent trials, outperforming M=0 and
M=1. The fact that fitness values are constrained by 1 × 10−6 and 2.5 × 10−6. suggests that the
algorithm functions optimally when M equals 2 and the fractional order β = 0.7 is applied. This
scenario exemplifies the algorithm’s improved performance, as it reaches its maximum efficacy when
particular parameter configurations are utilized. The intricate performance of the HCS-ANN
algorithm in different scenarios involving the M Hartmann number is depicted in Figure 7 (c)–(e). To
summarize, the resilience, responsiveness to optimal values, and optimum efficiency of the
HCS-ANN algorithm across various scenarios involving the M Hartmann number are illustrated in
Figure 7 (c)–(e). A comprehensive comprehension of the algorithm’s behavior and performance is
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obtained through the nuanced analysis.
• Convergence Figures 4–7 (f)

The fitness graphs generated by the HCS-ANN Deep Learning algorithm offer significant insights
regarding its optimization performance and convergence characteristics. The fitness value is
represented along the y-axis and the number of function evaluations is represented on the x-axis. The
mean fitness value of the population is represented by the red line, whereas the fitness values of
individual particles are illustrated by the blue lines. A thorough examination of the graph reveals the
following significant observations: Achieving Optimal Solution Convergence: The efficient
convergence of the Novel HCS-ANN algorithm is depicted in the graphs. The mean fitness value of
the population stabilizes around function evaluations at approximately 10−6 for β = 1, 10−5 for β =

0.9, 10−5 for β = 0.8 and 10−5 for β = 0.7, around 3 × 105 function evaluations shown in Figures 4–7
(f) respectively. This suggests that the algorithm possesses the ability to rapidly locate a solution that
produces a desirable fitness value.

The convergence of individual particles is visually apparent in the clustering of blue lines around
the red line. This indicates that the algorithm directs every particle towards the identical optimal
solution, thereby enhancing the algorithm’s consistency and dependability. Algorithm Efficiency: The
Novel HCS-ANN algorithm is a robust and efficient optimization method, as indicated by the graph’s
overall trend. The rapid convergence towards optimal solutions serves as evidence of its effectiveness
in resolving intricate optimization issues.

An Examination of Subfigures The fitness diagrams in Figures 4–7 (f) illustrate errors for the
following scenarios: β= 1, 0.9, 0.8, and 0.7, respectively. The subfigures additionally illustrate the
error distribution relative to the zero error line, which facilitates the evaluation of both accuracy and
validity. An error value that is lower signifies enhanced precision and improved efficacy of the
solution methodology. In summary, the fitness graphs and subfigures provide conclusive evidence
supporting the effectiveness of the Novel HCS-ANN algorithm as a robust optimization instrument.
The efficiency with which it converges to high-quality solutions and adjusts to various scenarios, as
evidenced by its beta values, underscores its adaptability and dependability across a range of
optimization tasks.
III) Variation of fractional order (β = 1, 0.9, 0.8, 0.7),Temperature (θ) and the convective–conductive
parameter (Nc =(1,2,3)):
Nc = (1, 2, 3),M = 3, (β = 1, 0.9, 0.8, 0.7),Q = 0.2, ω = 0.1,Θa = 0.1, α = π/6.

Varying the values of Nc = 1, 2, 3 in each Figure 8–11 and every trial have 30 runs for different
fractional orders i-e for (β = 1, 0.9, 0.8, 0.7), different in every case, while the other parameters remain
constant in each trial. Figures 8–11 (a) and (b): It is essential to analyze temperature, the convective-
conductive parameter Nc, and fractional order beta in order to comprehend the system’s behavior under
various conditions. Determining meaningful conclusions is made possible by the insightful solution
graphs and residual errors presented in Figures 8–11 (a) and (b) for varying parameters.

AIMS Mathematics Volume 9, Issue 6, 13659–13688.



13678

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

0.5

0.6

0.7

0.8

0.9

1

1.1

(X
)

Nc = 1

Nc = 2

Nc = 3

(a) Solutions plot

0 0.2 0.4 0.6 0.8 1

X

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

R
e
s
id

u
a
l 
e
rr

o
rs

Nc = 1

Nc = 2

Nc = 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Errors plot

-6 -4 -2 0 2 4 6 8 10 12 14

Minimum Fitness 10
-6

0

5

10

15

20

25

30

N
u
m

b
e
r 

o
f 
in

d
e
p
e
n
d
e
n
t 
ru

n
s

Nc = 1

(c) Normal plot of runs

-1 -0.5 0 0.5 1 1.5 2

Minimum Fitness 10
-5

0

2

4

6

8

10

12

N
u
m

b
e
r 

o
f 
in

d
e
p
e
n
d
e
n
t 
ru

n
s

Nc = 2

(d) Normal plot of runs

-3 -2 -1 0 1 2 3 4 5 6

Minimum Fitness 10
-4

0

5

10

15

20

25

30

N
u
m

b
e
r 

o
f 
in

d
e
p
e
n
d
e
n
t 
ru

n
s

Nc = 3

(e) Normal plot of runs

0 0.5 1 1.5 2 2.5 3 3.5

Number of Functions evaluation 10
5

10
-10

10
-5

10
0

10
5

10
10

10
15

F
it
n
e
s
s
 V

a
lu

e

(f) Convergence plot of HCS-ANN

Figure 9. Graphical results obtained with variation in Nc = 1, 2, 3 with fractional-order
β = 0.9.

• The fluctuation of the convective-conductive parameter Nc is illustrated in Figure 8(a) when the
fractional order β is set to 1. As Nc increases from 1 to 3, a distinct trend of decreasing temperature is
observed. This observation implies that elevated values of Nc are associated with reduced temperatures,
thereby establishing a robust inverse correlation between Nc and temperature. From these plots, the
significance of Nc in influencing temperature dynamics is evident. The solution plot of temperature
versus Nc is illustrated in Figure 9(a) for a β value of 0.9. Consistent with prior research, the observed
pattern indicates that a rise in Nc results in a corresponding decline in temperature. This uniformity
strengthens the correlation between Nc and temperature behavior.
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(f) Convergence plot of HCS-ANN

Figure 10. Graphical results obtained with variation in Nc = 1, 2, 3 with fractional-order
β = 0.8.

The influence of Nc on temperature is additionally examined in Figure 10 (a) and (b), specifically
for β values of 0.8 and 0.7, respectively. In both instances, the temperature decreases as Nc increases
from 1 to 3. This finding supports previous research and underscores the strong correlation between
Nc and temperature when considering various fractional orders. It is important to highlight that the
fractional order beta β is a crucial factor in influencing the dynamics of temperature. A reduction in
temperature is equivalent to a decrease in the fractional order beta, as depicted in Figures 8–11 (a).
This suggests that as fractional orders decrease, the resulting temperatures become more precise. A
complete comprehension of the system’s behavior requires an awareness of the temperature effect
produced by Nc and β combined. In summary, the solution plots that were displayed underscore the
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complex interaction that exists among Nc, fractional order beta β, and temperature. The insights gained
from the observed trends regarding the effects of parameter variations on the thermal behavior of the
system are of great value. Additional investigation and examination of these correlations may enhance
our comprehension of the intricate physical mechanisms at play.
• In order to evaluate the performance of the HCS-ANN model under various conditions, particularly
for distinct fractional orders (BETEA) and convective-conductive parameters (Nc), residual error
analysis is critical. The residual errors for temperature corresponding to various values of Nc and β
are depicted in Figures 8(b) and 9(b). The residual errors for fractional order beta equal to 1 and Nc
values of 1, 2, and 3 are contained within the range shown in Figure 8(b). This finding suggests that
the HCS-ANN model exhibits satisfactory performance under the given conditions. The limited
extent of variation implies a consistent and dependable forecast for temperature in light of these
conditions. The analysis is expanded to include fractional order beta equal to 0.9 and Nc values of 1,
2, and 3 in Figure 9(b). The residual errors are, which indicates that despite a minor reduction in
fractional order, the model retains its accuracy. This further validates the HCS-ANN model’s ability
to accurately represent temperature variations when convective-conductive parameters are altered.
The residual errors for fractional order beta equal to 0.8 and Nc values of 1, 2, and 3 are all within the
acceptable range, as shown in Figure 10(b). Notwithstanding the reduction in fractional order and
possible escalation in complexity, the model continues to demonstrate satisfactory performance, as
errors continue to fall within an acceptable range. Finally, the residual errors for fractional order beta
equal to 0.7 and Nc values of 1, 2, and 3 are illustrated in Figure 11(b). The range of residual errors is,
indicates that the predictive capabilities of the HCS-ANN model are preserved even when
convective-conductive parameters are higher and fractional order is lower.
• Figures 8–11 (c)–(e) Fitness plots.

Conducting an examination of the fitness curve produced by HCS-ANN with respect to various
convective-conductive parameters (Nc) and fractional orders β is critical in order to assess the
algorithm’s performance and convergence characteristics. The minimum fitness range for 30
independent trials is illustrated in Figures 8–11 (c)–(e), providing valuable insights into the
optimization process across different conditions.
• Nc = 1, 2 and 3 and β = 1 Figure 8 (c)–(e)

The normal fitness curve for Nc=1 and β = 1 reaches its maximum after 12 independent trials,
remaining within the range, as shown in Figure 8(c). This implies that the algorithm attains stability
and optimal performance following a specific threshold of executions. The normal curve depicted in
Figure 8(d) for Nc=2 and β = 1 is bounded by, and after 12 independent trials, it displays a comparable
peak. The normal curve illustrated in Figure 8(e) is characterized by a flattened shape within the
range, suggesting enhanced stability in comparison to the curves illustrated in Figures 8 (c) and (d) for
Nc=3 and BETA=1. The observed flattening implies that as Nc increases, performance becomes more
consistent and optimal outcomes ensue.
• Nc=1, 2 and 3 and β = 0.9 Figure 9 (c)–(e)

The fitness curve for fractional order Beta = 0.9 and Nc = 1 is depicted in Figure 9(c), where
it varies from and reaches its maximum after 12 independent trials. The curve remains between for
Nc=2 after eight independent trials, shown in Figure 9(d). In contrast, the range is for Nc = 3 and
β = 0.9, and the curve reaches its maximum after 12 independent iterations as in Figure 9(e). The
aforementioned observations underscore the influence of Nc on the fitness curve and the consequent
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convergence characteristics when applied to various fractional orders.
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(f) Convergence plot of HCS-ANN

Figure 11. Graphical results obtained with variation in Nc = 1, 2, 3 with fractional-order
β = 0.7.

• Nc = 1, 2 and 3 and β = 0.8 Figure 10 (c)–(e)
As shown in Figure 10(c), the normal fitness curve for Nc = 1 and β = 0.8 reaches its optimum

after 12 independent trials, remaining within the range. This suggests that the algorithm achieves
optimal performance and stability after a predetermined number of executions. The normal curve
illustrated in Figure 10(d) for Nc = 2 and β = 0.8 is delimited by, and it exhibits a similar peak after
8 independent trials and te curve is more flattered than that for Nc = 1. The normal curve depicted in
Figure 10(e) exhibits a more uniform shape throughout the range, reached to its peak after 12 trials,
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indicating improved stability when compared to the curves for Nc = 3 and β = 0.8 shown in Figure 10
(c) and (d). The flattening observed suggests that as Nc increases, there is a corresponding increase in
performance consistency, leading to optimal outcomes.
• Nc = 1, 2 and 3 and β = 0.7 Figure 11 (c)–(e)

Significant insights into the algorithm’s performance are uncovered by the normal fitness curves
produced by HCS-ANN for 30 independent trials, taking into account various values of the convective-
conductive parameter (Nc) and a fractional order β of 0.7. The subsequent enhanced analysis offers a
more comprehensive and logical depiction:

The optimal point of the normal fitness curve, which corresponds to Nc = 1 and fractional order
β = 0.7, is reached after 12 independent trials and remains consistently within the range, as depicted
in Figure 11(c). After a predetermined number of iterations, this behavior indicates that the algorithm
converges to an optimal solution, attaining stability and optimum performance.

In Figure 11(d), the normal fitness curve is circumscribed by for Nc = 2 and β = 0.7. It exhibits a
comparable peak that transpires marginally earlier, subsequent to ten independent trials. It is worth
noting that the curve displays a more angular form in comparison to the one at Nc = 1. The observed
flattening implies a potential increase in stability and a more consistent performance, which are both
suggestive of enhanced convergence characteristics for the specific combination of parameters in
question.

The performance is further illustrated in Figure 11(e) when Nc = 3 and β = 0.7. The curve exhibits
a uniform shape throughout the entire range and attains its maximum value after eight trials. The
observed flattening in comparison to Figure 11 (c) and (d) indicates that performance consistency
improves proportionally with the convective-conductive parameter (Nc). This implies that as Nc
increases, outcomes become more stable and dependable, ultimately resulting in the attainment of an
optimal solution.

To summarize, the performance of HCS-ANN is significantly impacted by the interaction between
the fractional order β and the convective-conductive parameter (Nc), as illustrated by the trends in
Figures 11 (c)–(e). The observed increase in curve flattening with Nc indicates enhanced stability
and convergence characteristics of the algorithm. This observation offers significant insights into the
behavior of the algorithm across various parameter configurations.
• Figure 8–11 (f) convergence plots.

The fitness graphs of the HCS-ANN Deep Learning Algorithm Figures 8–11 (f) offer significant
insights regarding its convergence and optimization characteristics. The graphs illustrate effective
convergence, as the average fitness value attains stability in the vicinity of function evaluations. The
convergence of individual particles is observable through the aggregation of blue lines encircling the
red line, thereby augmenting the consistency and reliability of the algorithm. Rapid convergence to
optimal solutions is evidenced by the algorithm’s overall trend, which demonstrates its efficacy in
resolving complex optimization problems. The mean fitness value of the population stabilizes around
function evaluations at approximately for Fractional order β = 1, for β = 0.9, for β = 0.8, and for β =

0.7 all are same, around function evaluations shown in Figures 8–11 (f) respectively. In order to
comprehend the convergence behavior of the optimization algorithm, it is vital to conduct an analysis
of the population’s mean fitness value, specifically with regard to various fractional orders β. The
stabilization of the mean fitness value for different fractional orders around a specific number of
function evaluations is depicted in Figures 8–11(f).
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The mean fitness value stabilizes in Figures 8–11(f) around function evaluations of approximately
when [β =1]. This implies that when the fractional order is set to 1, the optimization algorithm
converges to a stable solution across a consistent range of function evaluations. The reliability of the
algorithm in locating the optimal solution is indicated by the stability of the mean fitness value.

In a similar fashion, the mean fitness value stabilizes at around approximately function evaluations
when [ β = 0.9], the same is for, as illustrated in Figures 9–11 (f) respectively. This further validates
the algorithm’s capacity to converge consistently over a specified range of function evaluations,
notwithstanding a marginally diminished fractional order. Finally, these Figures 8–11 (f) illustrate
that the average fitness value remains constant at approximately function evaluations when. This
demonstrates the algorithm’s ability to converge despite the utilization of a lesser fractional order. The
non-dimensional plots are provided in Figure 12 (a) and (b) which shows the decay with time.
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Figure 12. Non-dimensional plots for Nc and Sh parameters.

7. Conclusions

The efficacy and resilience of the Hybrid Cuckoo Search Algorithm-based Artificial Neural Network
(HCS-ANN) in tackling complex optimization problems are demonstrated through its implementation.
A rapid convergence to optimal solutions is observed, providing further evidence of the algorithm’s
ability to effectively resolve intricate optimization problems.

Significant findings derived from solution plots and analysis:
• Several significant conclusions are deduced through the utilization of solution plots, residual

errors, normal fitness curves, and convergence plots.
• A clear inverse relationship between temperature and convection–conduction parameter (Nc) is

established as the value of Nc rises from 1 to 3, indicating a consistent trend of decreasing temperature.
• An increase in the Hartmann number (M) results in a more pronounced heat transfer rate across

a range of magnetic field angles, which is especially significant in applications such as nuclear reactor
fabrication.

The importance of the magnetic field and HCS-ANN in heat transfer:
• The implementation of the Novel HCS-ANN algorithm manipulates the magnetic field to inhibit

convection heat transport, thereby improving the average heat transfer through the fin.
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•A higher Hartmann number is associated with lower thermal profiles, underscoring the algorithm’s
versatility in handling diverse scenarios.
1) Evaluation of residual errors and fitness curves:
• Residual errors for both M and Nc are contained within a specified range of, thereby offering a

quantitative assessment of the model’s accuracy.
• After 30 independent trials, the algorithm’s consistent performance is demonstrated by normal

fitness curves, which validate its dependability in optimization tasks.
2) The influence of the magnetic field and thermal optimization:
• A marginal reduction in temperature is detected when the magnetic field is inclined, signifying

optimized heat transfer.
• The buoyancy force generated by the magnetic field enables improved heat dissipation and

heightened heat exchange emanating from the fin.
3) Prospects for future research:

This study lays the groundwork for further investigations into the thermal distribution within
radially porous fins when subjected to magnetic effects while damp, an area of particular significance
in compact heat exchangers. Additionally, it is advisable to conduct additional research on the
intricate physical mechanisms at play by examining the complex interactions among Nc, fractional
order beta (BETA), and temperature. In summary, this study provides significant contributions to the
understanding of the thermal characteristics of porous radial fins when subjected to an inclined
magnetic field. Furthermore, we demonstrate how the HCS-ANN algorithm effectively optimizes the
transmission of heat. The observations and correlations that have been identified facilitate progress in
the design of heat exchangers and other engineering applications of a similar nature.
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