This article dealt with a class of coupled hybrid fractional differential system. It consisted of a mixed type of Caputo and Hilfer fractional derivatives with respect to two different kernel functions, $ \psi_{_1} $ and $ \psi_{_2} $, respectively, in addition to coupled boundary conditions. The existence of the solution of the system was investigated using the Dhage fixed point theorem. Finally, an illustration was presented to validate our findings.
Citation: M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid. Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions[J]. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666
This article dealt with a class of coupled hybrid fractional differential system. It consisted of a mixed type of Caputo and Hilfer fractional derivatives with respect to two different kernel functions, $ \psi_{_1} $ and $ \psi_{_2} $, respectively, in addition to coupled boundary conditions. The existence of the solution of the system was investigated using the Dhage fixed point theorem. Finally, an illustration was presented to validate our findings.
[1] | T. M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications in mechanics: wave propagation, impact and variational principles, John Wiley & Sons, 2014. https://doi.org/10.1002/9781118909065 |
[2] | P. J. Liu, T. Munir, T. Cui, A. Din, P. Wu, Mathematical assessment of the dynamics of the tobacco smoking model: an application of fractional theory, AIMS Math., 7 (2022), 7143–7165. https://doi.org/10.3934/math.2022398 doi: 10.3934/math.2022398 |
[3] | I. Y. Miranda-Valdez, J. G. Puente-Córdova, F. Y. Rentería-Baltiérrez, L. Fliri, M. Hummel, A. Puisto, et al., Viscoelastic phenomena in methylcellulose aqueous systems: application of fractional calculus, Food Hydrocolloids, 147 (2024), 109334. https://doi.org/10.1016/j.foodhyd.2023.109334 doi: 10.1016/j.foodhyd.2023.109334 |
[4] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[5] | R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039 |
[6] | J. Alzabut, A. G. M. Selvam, V. Dhakshinamoorthy, H. Mohammadi, S. Rezapour, On chaos of discrete time fractional order host-immune-tumor cells interaction model, J. Appl. Math. Comput., 68 (2022), 4795–4820. https://doi.org/10.1007/s12190-022-01715-0 doi: 10.1007/s12190-022-01715-0 |
[7] | M. Awadalla, Y. Y. Y. Noupoue, K. A. Asbeh, N. Ghiloufi, Modeling drug concentration level in blood using fractional differential equation based on psi-Caputo derivative, J. Math., 2022 (2022), 1–8. https://doi.org/10.1155/2022/9006361 doi: 10.1155/2022/9006361 |
[8] | R. A. El-Nabulsi, W. Anukool, The paradigm of quantum cosmology through Dunkl fractional Laplacian operators and fractal dimensions, Chaos Solitons Fract., 167 (2023), 113097. https://doi.org/10.1016/j.chaos.2022.113097 doi: 10.1016/j.chaos.2022.113097 |
[9] | R. N. Premakumari, C. Baishya, M. Sajid, M. K. Naik, Modeling the dynamics of a marine system using the fractional order approach to assess its susceptibility to global warming, Results Nonlinear Anal., 7 (2023), 89–109. |
[10] | A. M. Zidan, A. Khan, R. Shah, M. K. Alaoui, W. Weera, Evaluation of time-fractional Fisher's equations with the help of analytical methods, AIMS Math., 7 (2022), 18746–18766. https://doi.org/10.3934/math.20221031 doi: 10.3934/math.20221031 |
[11] | I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., 91 (2003), 034101. https://doi.org/10.1103/PhysRevLett.91.034101 doi: 10.1103/PhysRevLett.91.034101 |
[12] | A. Buscarino, R. Caponetto, L. Fortuna, E. Murgano, Chaos in a fractional order duffing system: a circuit implementation, 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Italy: Bari, 2019, 2573–2577. https://doi.org/10.1109/SMC.2019.8914007 |
[13] | Y. Liu, Y. M. Li, J. L. Wang, Intermittent control to stabilization of stochastic highly non-linear coupled systems with multiple time delays, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 4674–4686. https://doi.org/10.1109/TNNLS.2021.3113508 doi: 10.1109/TNNLS.2021.3113508 |
[14] | S. S. Redhwan, M. Han, M. A. Almalahi, M. Alsulami, M. A. Alyami, Boundary value problem for a coupled system of nonlinear fractional $q$-difference equations with Caputo fractional derivatives, Fractal Fract., 8 (2024), 1–22. https://doi.org/10.3390/fractalfract8010073 doi: 10.3390/fractalfract8010073 |
[15] | B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal. Hybrid Syst., 4 (2010), 414–424. https://doi.org/10.1016/j.nahs.2009.10.005 doi: 10.1016/j.nahs.2009.10.005 |
[16] | X. T. Gao, L. Chen, Existence of solutions for a system of coupled hybrid fractional integro-differential equations, IAENG Int. J. Appl. Math., 52 (2022), 1–6. |
[17] | K. Hilal, A. Kajouni, S. Zerbib, Hybrid fractional differential equation with nonlocal and impulsive conditions, Filomat, 37 (2023), 3291–3303. https://doi.org/10.2298/FIL2310291H doi: 10.2298/FIL2310291H |
[18] | K. D. Kucche, A. D. Mali, On the nonlinear $\psi$-Hilfer hybrid fractional differential equations, Comput. Appl. Math., 41 (2022), 86. https://doi.org/10.1007/s40314-022-01800-x doi: 10.1007/s40314-022-01800-x |
[19] | M. Alghanmi, R. P. Agarwal, B. Ahmad, Existence of solutions for a coupled system of nonlinear implicit differential equations involving $\varrho$-fractional derivative with anti periodic boundary conditions, Qual. Theory Dyn. Syst., 23 (2024), 6. https://doi.org/10.1007/s12346-023-00861-5 doi: 10.1007/s12346-023-00861-5 |
[20] | H. Lmou, K. Hilal, A. Kajouni, Topological degree method for a $\psi$-Hilfer fractional differential equation involving two different fractional orders, J. Math. Sci., 280 (2024), 212–223. https://doi.org/10.1007/s10958-023-06809-z doi: 10.1007/s10958-023-06809-z |
[21] | F. Haddouchi, M. E. Samei, S. Rezapour, Study of a sequential $\psi$-Hilfer fractional integro-differential equations with nonlocal BCs, J. Pseudo-Differ. Oper. Appl., 14 (2023), 61. https://doi.org/10.1007/s11868-023-00555-1 doi: 10.1007/s11868-023-00555-1 |
[22] | C. S. Varun Bose, R. Udhayakumar, Approximate controllability of $\psi$‐Caputo fractional differential equation, Math. Methods Appl. Sci., 46 (2023), 17660–17671. https://doi.org/10.1002/mma.9523 doi: 10.1002/mma.9523 |
[23] | M. L. Maheswari, K. S. K. Shri, E. M. Elsayed, Multipoint boundary value problem for a coupled system of $\psi$-Hilfer nonlinear implicit fractional differential equation, Nonlinear Analysis Model. Control, 28 (2023), 1138–1160. https://doi.org/10.15388/namc.2023.28.33474 doi: 10.15388/namc.2023.28.33474 |
[24] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[25] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[26] | J. V. D. C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[27] | B. C. Dhage, Some variants of two basic hybrid fixed point theorems of Krasnoselskii and Dhage with applications, Nonlinear Stud., 25 (2018), 559–573. |
[28] | B. C. Dhage, On a fixed point theorem in Banach algebras with applications, Appl. Math. Lett., 18 (2005), 273–280. https://doi.org/10.1016/j.aml.2003.10.014 doi: 10.1016/j.aml.2003.10.014 |
[29] | J. W. Green, F. A. Valentine, On the Arzela-Ascoli theorem, Math. Mag., 34 (1961), 199–202. https://doi.org/10.1080/0025570X.1961.11975217 doi: 10.1080/0025570X.1961.11975217 |