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1. Introduction

Fractional calculus is the study of fractional order integral and derivative operators over real
or complex domains. The importance of utilizing fractional derivatives in differential equations
arises from their capacity to model complicated events when compared to traditional integer-order
derivatives. The nonlocal property allows us to describe long-range correlations in various physical
systems [1-5]. Fractional differential equations (FDEs) are employed to mathematically represent
circumstances and processes observed in a variety of engineering and scientific fields. These disciplines
include electrodynamics of complex mediums, aerodynamics, signal and image processing, blood flow
phenomena, economics, biophysics, control theory, and more [6—10]. Due to their effectiveness in
simulating intricate real-world processes, FDEs have attracted the interest of many researchers.

The study of coupled systems, including FDEs, is significant, as such systems appear in a variety
of practical problems, such as the Lorentz system [11], the fractional Duffing system [12], etc.
A number of theoretical investigations and research results on coupled systems of FDEs are found
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in [13, 14]. Certain physical problems are also nonlinear in nature. Perturbing such problems enables
a smooth study of their characteristics. Systems perturbed in a quadratic manner are referred to as
hybrid differential equations (HDEs). Dhage and Lakshmikanthan [15] first investigated the existence
and uniqueness of the solution to the ordinary first-order HDEs with perturbations of the first and
second kinds. Recent works on HDEs can be found in [16-18].

Significant advancements have been made in addressing the qualitative analysis and numerical
computation of solutions to boundary value problems associated with nonlinear FDEs. Among several
fractional derivatives, the generalized (¥-) fractional derivatives are effectively used for investigating
FDEs. Boundary value problems involving generalized fractional derivatives were studied by several
authors; see, for example, [19-22] and references therein.

Recently in [23], we studied the coupled system of the -Hilfer nonlinear implicit fractional
multipoint boundary value problem of the form

DU x(t) = £, y(1), "D y(1)), t €T = [a, b],
HD™BY (1) = g(t, x(), "DV x(1)), t €T = [a, b],

xa@) =0, x(b) = 3" @ DI yr) + ) o jy(w)), (1.1)
i=1 Jj=1

P q
¥@) =0, y(b) = > ADIPV () + ) ().
r=1 s=1

where 7D’ P H DZE’B v OH DZ;W, H DZ’;’ﬁ Y and Dz’;’g ¥ are the y-Hilfer fractional derivatives of order a/,
@, u, 0;, and 6, respectively, with 1 < 6,0, <u < aj,a, <2,andtype 0 < B,v < 1, ¢;, 0}, A, u5, € R,
Ni,wj, & €1, f,8 : I X RX R — R are continuous functions.

We now extend and develop our investigation to analyze the coupled system of multifractional

HDEs with coupled boundary conditions of the form

C 6121/11 H
D" p

@, 8,1, ( w(&)
- g,(g, (&), p(&))

) + /1190(8)] = (& 9(e). ple)),

C O | H % B, p(e) _ _

DD (TS ) )| = e ple e, € € lasbl = T, (1.2)
¢(a) =0, @(b) = {,p(0)),
p@=0.  p)=Lp@). oo €T, (L ER

where €D% ¥ and D% are the y,-Caputo fractional derivatives of order 6, and &,, respectively,
0 <6,6, <1, # DZi 4 Y2 and # DZf’ﬁ 22 are the ¥,-Hilfer fractional derivatives of order ¢, and
a,, type B, and S,, respectively, 0 < «,,a, < 1,0 < B,,6, < 1, 4,,4, € R, and the functions
fi. i t IXRXR—Randg,,g, : J XxRXxR— R\{0} are all continuous.

We emphasize that the present study is novel, more general, and contributes significantly to the
existing literature on the topic. The proposed problem includes:

e fractional derivatives of different types, namely, ¢-Caputo and y-Hilfer fractional derivatives;
e fractional derivatives with respect to different kernel functions ¢, and ¥, ;
e a hybrid system of fractional differential equations with boundary conditions.
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The combination of ¢-Caputo and y-Hilfer derivatives in a coupled system provides a more flexible
and comprehensive framework and enhances the modeling capability by capturing different types of
fractional behavior simultaneously. The y-Caputo fractional derivative is suitable for modeling systems
with memory effects, where past states strongly influence the present behavior. The y-Hilfer fractional
derivative provides a more generalized fractional derivative that includes both memory and anticipation
effects. The parameters 5, and 5, in (1.2) allow for tuning the balance between the past and future
contributions. The y-Caputo derivative is sensitive to initial conditions, while the -Hilfer derivative
is known for its behavior near singularities. Combining both allows for a more nuanced approach to
systems with complex dynamics.

Different kernels in the derivatives allow for the modeling of different decay and growth behaviors,
enabling a more accurate representation of the physical processes.

Multifractional derivatives provide a natural framework for capturing nonuniform memory effects
in coupled systems. The dynamics of coupled systems with multifractional derivatives are significant
for developing more effective control and optimization algorithms for complex interconnected systems.

Understanding the qualitative aspects of the system of FDEs helps in establishing the mathematical
framework necessary for analyzing and solving these equations. Thus, our objective is to investigate
the existence of a solution to a coupled system of multifractional HDEs (1.2).

The article is organized as follows: Section 2 presents the core definitions, lemmas, and theorems
for the study. In Section 3, we derive a solution to (1.2). Section 4 establishes the existence of a
solution to (1.2). Section 5 includes an example that illustrates our findings, along with graphical
representations of the results.

2. Preliminaries

In this section, we present various lemmas, theorems, definitions, and notations that are significant
for our study.

Let C(J,R) and C"(J, R) be the spaces of all continuous and m-times continuously differentiable
functions, respectively.

The weighted space of a function /4 is given by [24]

Cr(T) = {h:(a,b] = R, A" e C(T), i € Cop (D),

where

Cery(J) =th:(a,b] = R; Y(e) —y(@) h(e) e C(I)}, 0 <y < 1.
Also, ¢ € C(J,R) is an increasing function such that ¥/'(¢) > O for all € 7.

Definition 2.1. [24] Let (a,b) € R and k > 0. The y-Riemann-Liouville fractional integral of a
Sfunction h with respect to  is defined by

, 1 ¢
I'Vh(e) = %f W' ()W (e) = Y(s)) ' h(s)ds, &>a>0,

where 1'(.) is the Gamma function.

Lemma 2.1. [24] Let «,,6, > 0 and | > 0 be constants, then
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()1” e = 1" (o), &> a,

(i) 1 ) — @) o) = AL (e) - @)

Definition 2.2. [25] Let 6, > 0 and m — 1 < 6, < m. The Caputo fractional derivative of a function
h € C"(J,R) with respect to  is defined by

D V(e =1 !
®) <l//’()d

_; ! _ m—6,—17[m]
Tm-0) f W ()W) = ()" hy " (s)ds,

) h(e)

where m = [6,] + 1, and [0,] is the integer part of 6, € R.

Definition 2.3. [26] Let o, > 0 and m — 1 < a, < m. The y-Hilfer fractional derivative of a function
h e C"(J,R) of order a, and type 0 < B, < 1 is defined by

D" B | (m—a )y d \m_(1-g,)m-a,)w
he) = 1" (—— " (8) —) L he),

where m = [a,] + 1, [@,] is the integer part of «, € R, andy = «, + B,(m — ,).
Lemma 2.2. [25]Ifh e C"(J,R), m—1 <6, <m, then

Jlkl (@)
I'(k +

17" D) = h(e) - Z FWE - @),

for all £ € [a, b), where h"h(e) = (72=4L)"h(e).
Lemma 2.3. [26]Ifhe C"(J,R), m—-1<a, <m 0< B, < 1, andy =«a, +,(m—«,), then

m _ —k .
I 4 HDal By lﬁh(s) = h(e) — Z (wlgf; - l]/:(j)l); hl[pm—kjlc(;—ﬂl)(m—al)J//h(a),

for all € € [a, b], where h[m]h(s) = (- @ da) h(e).
Let S = C(J,R). Clearly, S is a Banach space endowed with the norm ||¢|| = sup|¢|, and also a

eegJ
Banach algebra under the multiplication defined by ¢p(e) = ¢(e)p(e), p,p € S, €€ J.
Consequently, the product space & = S X S is a Banach space with the norm |[|(¢, p)I| = |l¢ll +

lloll. & is also a Banach algebra [27] under the multiplication ((¢, p).(@,0))(€) = (¢, p)(€).(p, p)(e) =
(p(&)¢(e), p(e)p(e)), (¢.p), (@,p)€E, €€ Y.

Theorem 2.1. [28] Let S be a convex, bounded, and closed set contained in the Banach algebra &,
and operators A : & — Eand B : S — & be such that

(i) Ais a Lipschitz map with Lipschitz constant L;
(ii) B is completely continuous;
(iii) ¢ = A(P)B(p) ©@ p e SYp e S;
(iv) LM < 1, where M = ||B(S)]|.

Thus, the operator equation ¢ = A()B(p) has a solution in S.
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3. An auxiliary result

The solution of the boundary value problem (1.2) is derived in this section.

Lemma3.1. Let0<6,,0,,a,,a,<1,0<B8,6, <1, y=a, +B(1~-0a), y=a, +5,(0-0a,), a>0,
and Q = Q1Qy — Q3 # 0, thenfor f,, f, : T XRXR — Rand g,,8, : J XRXR — R\{0}, the
solution of the system (1.2) is given by

&0 N1 1 fe o), plen — 41 ) + ;;?)an‘”z f’fi !

x (]800 ), o DL LEY flor, p(,), @l0,) = &,(b, @), (b))

< I 0 £(b, @(B), p(0)) = £, A,8,(0,, p(0r ). oo DL plr) + 4,8, (B, (D), p(b))
x [0 p(b)] - 2,8, (). e N L £, (). p(0,))

— &,(b.p(b), )L LY £(b.p(b), 9(B)) = £,4,8, (0, 9(07,). plr Dot " p(cr,)

+ .8.(0,6(b). pOII " (D))

p(e) =

(3.1

8.6 0@ g L L2 £, p(@), ) = LI p(e) + (‘”;;?)F;a‘”fal); :

x (Qs[¢.8.(0,. (@), oo DI L fi(0,. p(0,), () - 8,(B. ¢(b). p(b))

x L1 I £, @(b). p(b) — £, 4,8, (e, ) (o 2 pler,) + 4,8, (b p(b). p(b))
x 1" p(b)] - Q128,00 ). pla N L £ 0(0,). p(,))

= 8,(b.p(b). )L L2 £(b. p(b). 9(B)) = £,4,8, (07, 9(07,). por Dot " p(cr,)

+ 0,8,0, 90, oV )]

p(e) =

(3.2)
where

W, (b) — ¥, (a)™
I['(a, +1)

W, (o)) =y, (a)™
(e, + 1)
=68 90<‘fz>’p(02>)(%((;2(ix_f 21()0)) 1
(wz(b) - wz(a))“z

[(a,+1)

Q| = g,(b, ¢(b), p(b))

QZ = glgz(gl’p(gl)’ QD(O-l ))

Q4 = g,(b, p(b), ¢(b))

Proof. Using Lemma 2.2 and applying Ijizw‘ and Iji:wl on both sides of the HDEs in (1.2), we obtain

D) = 1 e gl = Ayt + .
HDZfﬁzz%(g & 5((;) 90(8))) = 127 £ (5, p(e), 9(8) — ,p(6) + dy.
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Now, using Lemma 2.3 and applying I;1 2 and IZEW2 , we have

(% (‘9) - wz (a))a'
T(a, + 1)

(8) a' u,bz I¢] 2
e @ ey ol NEe@:pE) ~ 4L e + o

(% (&) — ¢, (@)
I'(y) ’

(wz (8) - lrllz(a))az
[, +1)

pe) _ Wy 16, o0,
e e a i LEpE) @) - AL ) + d

(lﬁz (&) — ¢, (@)’
L) '

From ¢(a) = p(a) = 0, we get ¢, = d, = 0, then the above equations reduce to

(W, (&) — ¥, (a))"
T +1)

w(e) @, 16, o0,
gl(g’ 90(8),,0(8)) _Ia+ I fl(g (&), ple)) — /llla*' w(e) + ¢

(3.3)

p(e) AL I‘S £ (e p(e) 0le)) — LI p(e) + d W, (&) _l//z(a))az. G
8,(&,p(€), ¢(€))

e, +1)
Using ¢(b) = ¢, p(0,), p(b) = {,¢(0,) and solving the equations, we obtain

1 a
9(94[4 8.0, p(a ), o DL 12 (e, (o), 9(0,) = g, (b, 9(b), p(b))

X I I £ (b, @(b), p(b)) = £, 4,8, (0, p(a,), 9l DI p(r)) + A, 8, (b, @(b), p(b))
x [ g(b)] - Qa,8,(0,, (o), pa DI L £, 0(0,), ()
— 8,(b, p(b), gDV 121 £.(b, p(b), 9(b)) — 4,4, 8,(05, (), Pl NI (07,

+ 4,8, (b, @(b), p(O)IL,? %(b)]),
and

1
d, =§(Qs[;g2(crl,p<al>,go(m)) FELE 0@, 0l0) — 8, (b plb).p(b)

X I £ (b, @(b), p(b)) = £,4,8,(0,, (), ol D22 p(0r,) + A, 8, (b, @(b), p(b))
x 111" 0(b)] - Qi[4,8,(0, @0 ). N 1 £, 0(0,). p(0,)
— 8,(b, p(b), @I 12" (b, p(b), (b)) — £,4,8,(c, @(07,), pl, NI (a7,

+ 2,8,(b, ¢(b), p(b))1? w?p(b)]).

By substituting ¢; and d; in (3.3) and (3.4), we obtain (3.1) and (3.2), respectively.
Conversely, we can verify that (3.1) and (3.2) satisfy (1.2) by direct computation. O
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For simplicity in computation, we introduce the following notations:

X () = 1717 (o), Th(b) = 1Y (1)(b),

Hi(e) = Ky X, (8) + 4Ty (8), i = 1,2, Jile) = My + 47,/ ()i = 1,2,
Lo ® e » Tu® b re

Q= — [0 X, (@) + QX B, Q= —E— QX () + QX ()],
T, (b) . . T, (b) . .

Q& =—5 Q04,7 (@) + QAT D), Q= R Q8,47 (@) + 24,7, ()],
Tgi () 5, 5, Tgi () 5 5

Q= — [0 X S @)+ QX2 B Q= —5— LX) () + X)) (D)),
™, (b) T, (b)

v o N i X
Q= =GR E@) + AT B) Q= =g |G T )+ TG

4. Existence of a solution

The existence of the solution to (1.2) is established in this section.
We transform our system into a fixed point problem.
Define an operator 7 : & = Eby T (¢, p)(€) = (T1(p, p)(E), T2(p, p)(€))), where

8.6 0@, PN L L1 £ 50, pe)) = 4,151 () + (‘”é?)rza‘”zi“f; |

x (28,00, p(0). oo DL L (0, p(0,), () - 8,(b. ¢(b). p(b))
X [0 F (b, @(b), p(B)) = £,,8,(0r, (o), el D p(er,)
+ ,8,(b.¢(b). o) 9(b)| - W8, (0. (). p(0r)

a

[0 £, 0(0,).p(0,)) = 8,(b, p(b). @BDL " 12" £,(b. p(b). (b))
— 5,A,8,(0,, 9(0), plo ) p(or,) + 4,8, (b, so(b)m(b))ljf*”zp(b)])},

Ti(p,p)e) =

(6@ o2 15 oo o) - AL pte) + LT

x ([L8. .00 ). el DL LY f(0,p(0). 9(0)) - 8,(b. 9(b). p(b))
< I £ (b, p(b). p(b)) = £, 4,8,(0,. p(0r ). (o DI plor,)

+ ,8,(b.¢(b). o) 0(b)| - L8, (0,1 0(,). p(0r)

< I f (0 0(0,), p(0,)) = 8,(b, p(B), @) 127 £.(b, p(b), (b))

@, Y,

= £,4,8,(0,, 9(0). Pl DY 6(a,) + L,8,(b, (b), p(D)). p(b)])}.

T2, p)e) =

The coupled system (1.2) has a solution if the operator equation 7 (¢,p)(e) = (¢,p)(€) has a

fixed point.
We consider the following hypotheses:

AIMS Mathematics Volume 9, Issue 6, 13642—13658.



13649

(H;) The functions f, : ¥ XRXR — Rand g, : X Rx R — R\{0}, i = 1,2 are continuous.
(Hy) There exist constants Ly, Ly, L, , and L, such that

£ (&, ¢(e), p(&) — f (e, (&), p(aN] < Ly (I — &l + o = pl),

|f.(e, p(e), ¢(€)) — f(&, ple), el < Ly, (I — pl + I — ¢l),

g, (e, p(e), p(&)) — 8,(&,8(e), p(e)] < Ly (lp — @l + o — pl),

18, (£, p(e), p(€)) = &, (€, p(&), p(e)] < Ly (Ip — pl + ¢ — &),
for all (g, ¢, p), (&,p,p) € I X RXR.

(H3) There exist functions p,, p, € S and continuous nondecreasing functions ¢q,,q,,7,,7, :
[0, 00) — [0, o) such that

£\ (&, (). p(E) < p, (&) q,(I¢]) 7, (D),
\f.(&, (), p(e))] < p,(£) q,(I¢]) 7, (D),

for all (g,¢,p) € T X RXR.
(H4) There exists a number @ > 0 such that
M Q + MzQ
- 1 - (L, Q L, Q )

and A= (L, +L)Qs <1,

where M, = suplg,(&,0,0)l, My = suplg,(&,0,0), Qy = Qp, + Qs
eegJ geg

Qo, =X, (&) + QUMIIP llg, (@), (@) + Q@ Mlp, g, (@)r, (@)
+ @Y, (&) + QL I llg,(@)r, (@) + Ly, lIp,llg, (@)r, (@)
+ QM + QM) + WZ(Q4£g2 + Qz»ﬁg1 )

and

Qo, =(X,' (&) + Qs Mo)lp,llg,(@)r (@) + QeMillp,llg,(@)r, (@)
+ T, @) + Qs Ly Pl @)r, (@) + Qs Ly, Ip,llg,(@)r, (@)
+ M + QgMz) + ZUZ(Q7.£gl + Qg.Egz).

Theorem 4.1. If (Hy)—(Hy) hold, then the coupled system (1.2) has a coupled solution on .
Proof. Let us define a subset K of the Banach space & by K = {(¢,p) € & : ||(¢, p)l| < w}.
Clearly, K is a closed, bounded, and convex subset of &.
Define operators 7*, 3¢, G¥, G)¥ : I — R by
F = L0 fepe)pe), T =100 feple). oe)),
G7 = g,(5.¢(e), p(&)), Gy’ = &.(e.ple). ple)).

AIMS Mathematics Volume 9, Issue 6, 13642—13658.
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For (¢, p), (p,p) € &, we obtain

5D et _ _
7 = 771 < X, @)Ly (e = @l + o - ),

0y sy

77 = 73 < X @)Ly, (1o = pl + o — @D,

G -GV 1< Ly lo—l+lp-pD). 16y =G I < Lo (o —pl+ e — @D,
F1< X, @, llg, (@)r, (), F71 < X2 @)p,llg, (@)r, (),
GY1 < Ly (¢l + o) + M, G571 < Ly, (ol + ) + Mo

Now, let us define operators A = (A, Ay) : E > Eand B = (B1,5;,) : K —» Eby
ﬂl(ﬁo,p) = g‘fp(‘g), ﬂZ(SD,p) = gg‘/’(g),

(%( )_ wz( ))al
f;F(o« o HEACAZACORGR Ol

Bie0) =\ - A,G @)L p(e) + A GBI 9b)] - | 4,67 (0 )F ()

a

= GFDFFHBb) - 44,67 (@)1 g(a,) + 4,65 (DL (b)),

F(e) = A, 11" p(e) +

and

(dlz( ) = wz( )* )
o Tt 1 (@lagrerie) - 6rerr e

BZ(%P) =94 _ gl/lzgfzw(a_l )ij:wzp(o_l) + /llgfp(b)lzl :wzgo(b)] _ Ql[gzgsfp(o_z)ﬁwp(o.z)
— G DFL D) - LA,GF () () + LG B p(b))).

(12

Fi¥(e) - L1 " p(e) +

Thus, we observe that 7 (¢, p)(€) = A(e, p) - By, p).

Now, we prove that A and B satisfy the conditions of Theorem 2.1.
Step 1: To show that A is a Lipschitzian on &.

Let (¢, p), (¢,p) € &, then we obtain

AL (@, p)(&) = AL@, Pl < Ly, (lle — @Il + llo = plD),

and
A (e, p)(&) — AP, Pl < L, (I — @Il + llo — plD.

This implies that
Ap, p)(&) = A@, pll < (L, + L)l — &Il + llo = pID).

It means that A is a Lipschitzian with a Lipschitz constant La = £, + £, .

Step 2: To prove B is completely continuous from K to &E.

Based on the continuity of functions f,, f,, g,, and g,, the operator 8 is continuous.
Now, we show that B(%K) is uniformly bounded in K.

AIMS Mathematics Volume 9, Issue 6, 13642—-13658.



13651

For any (¢, p) € &, we obtain

1B1(p, p)(E)|

< IFPE) - 4, 1 (e + LO VO

Q T, +1) (4165

x T35 )| = 167 (D IF (b)) - &, 14,1165 ()l 12 |p(or))

+ L 11GF B L o)l - 190l[ 4, 167 (@ )N FF ()] - 1G5 (b))

X |FED) = &, I 1G7 ()] I (o)l + 1,1 1G5 (B)] 122 (b))
T, (&)

@llpllg,(@)r, (@) + 1417} (@) + == [|Q4|(4 (L@ + M), ()

X .llg,(@)r, (@) + (L @ + MOX 5 0, g, (@), (@) + &ALy, 0+ Mo)
N ‘Y’Z ()@ + A, (L, @+ Ml)TZ; (b)w) + |Qz|(§z(£g1 @+ Ml)Xillfﬂlz (@)
X 1p,lg, (@), @) + (L, @ + MIX;:S G)Ip, (@), (@) + LI L @+ M)

0,
< 171
_le%

X0 (0T + 4Ly @+ M (D))
., TZ]Z (8) 0., 0, ,.
<X @l lg, (@)r, (@) + —Z [0 X0 () + 101X )1l @), (@)M
Ty, ®) 5 50 oo @
b I X ) ) + 104X )l g, @I @M+ (1,151 5) + 2
T (b)
0

@

X [1941¢, X757 () + 11X, (0)|Ip.llg, (@)r (@) L, +

T, (b)
a v, @, @,
QUK O g, (@), (@) Ly, + —2— 1 14,105 (0,) + 10l LY ()] M

Ty, () 5 . Ty, () 5
& [T (@) + QL1 ()M ) + (—5 =1l 1417, ()
T, (b)
Q
< (XZII’,T;Z (&) + iMlIp,lig, (@)r (@) + QM:lIp,llg,(@)r, (@)
+ w(l/ll |Tal (b) + Ql”p1 ||Q1 (w)rl (w) + Q2||p2”q2(w)r2(w) + Q4M3 + Q3Ml)
¥,

+ wz(Q4£g2 + Q3'£g1 )

[1901,X,) (@)

+

#1001 14,17, (D) £, + |I21214,1,) () + Q41 12,17, (D) | £, )

Thus, ||B; (¢, )|l < le . This implies B, is uniformly bounded on K.
Similarly, we obtain 8, is uniformly bounded on K.

Consequently, B is uniformly bounded on K.

Next, we show that 8 is equicontinuous.

Letg,, g, € J with g < &,, then we obtain
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|Bl(¢ap)(82) - Bl(‘P,P)(81)|
=|F(e,) - A, I p(e,) - F() + 4, 112 g(s,)

UACY S wz(a»“' - (Wu(e) = (@)™
" Q T(a, +1) (Qu|¢, 85 () F (o)

—GP(D) F'b) =&, A, Gy (o) 12 p(ar) + 4, G (b) 112" (b))
W|g, ¥ (o) F¥(o,) - G DFLH (D) - &, 4, G () I () + 4, G5 (b) ij:%p(b)])|

1 2
:‘F(él +1)_r(al)flﬁ;(u)(lﬁl(u)—%(a))f W, (&,) = ¥, )" £, (u, p(u), p(u)) du
0

1 : ’ 0 a, -1
T T f VL0, @0 =, @) Wi(e,) =, @)™ £, pla), p(w) du

T )flﬂ(u)(%(S) W, )"~ (u) du + flﬁ( (W, (&) = ¢, )"~ )

F()

(lﬂz(s ) lﬂz(a))al — (lpz(g) ',02(61))“
¥ Q-T(a, +1) (94[5 gp‘p(o' )7:‘0‘/7(0 )

— G FY'b) =&, A, Gy (o) 12 p(ar) + 4, G (b) 112" (b))
W[e, G7°(0,) F(0,) - G DT (b) - &, 4, G (o) I (o) + 4, G (b) I sz(b)])|

Ip,lg, (@) @) [, . .
T, + D -T(@,) f W)W, ) = 0, @) [W(e) =, )™ = Wile,) = v, ()™ ™| du
0

' f W0, (0 = b @), W) = v @) duf+

1w : ’ o, -1
T f W] W, (&) - o, ()

— (W, (&) =¥, ()™~ 1 du + f W)W, (8,) =, ()M~ du

W, (&) — ¢, (@)™ —(wz(g) W, (@)™
’ Q T(a, + 1) (@4, 650 )77%(0)

—GPB)FPB) - 4, 4, Gy (o) [ p(0r) + A, G (b) 12 g(b)]
— 07, G(0,) FP(a,) - G BIFF(b) = &, A, GP () I g(ar,) + 4, G (b) 17 %(b)])‘

— Qasg, — ¢,

Similarly, we can prove that |B,(¢, p)(€,) — Ba(p, p)(e,)l — Oas g, — ¢,.

AIMS Mathematics Volume 9, Issue 6, 13642—13658.



13653

Consequently, |B(p, p)(e,) — B(p, p)(g,)] — 0 as &, — &,, which implies that 8 is equicontinuous.
By the Arzela-Ascoli theorem [29], B is completely continuous.

Step 3: To prove that condition (iii) of Theorem 2.1 holds.

Let (¢, p) € & such that

(p,p) = Alp,p) - Blp,p) = T (¢,p),

then
le(e)l = 1A (@. p)() Bilg.p)E)| < |G (0)|Qm, < | L (. p)l + M |Qo .
Ip(@)] = 1A, p)(&) Ba(0. p)(E)| < 1G5 (8)|Qmr, < | Lo, (0 I + M2 |Qr .
This implies

. o)1l = llgll + lloll <[ L, litp, oIl + M1 |Qar, + [ Le, I, )l + M2 | Qo
<Ly, Qo + Ly, Qo ), Pl + MiQoy, + MoQor,
< Mle] + Mzsz
-1 - (Lgl le + ngng).

From (H3), we obtain [|(¢, p)|| < @.
Step 4: To prove that condition (iv) of Theorem 2.1 holds.
We have

M =B = sup {lIB(e, p)I}

=sup {[|B1(¢, 0l + 1Ba(, p)II}
SQw] + sz = Qw-

From the above equation, we get LaM < (L, + L, )Qy < 1.
Thus, all the conditions of the Theorem 2.1 are satisfied and the equation (¢,p) = 7 (¢,p) has a
solution in K. Consequently, the coupled system (1.2) has a coupled solution. O

5. Example

This section includes an illustration to demonstrate the credibility of our findings. We also
interpret the numerical solution of the system. The system describes a dynamic and interconnected
process where two quantities ¢(g) and p(g) evolve over time, influenced by memory effects, nonlocal
interactions, external forcings, and mutual dependence on each other. This type of system is relevant
in electrical engineering and circuit analysis. The state variables may represent the voltage across a
capacitor and the current through an inductor. The system is coupled because the voltage and current
influence each other through the interaction terms, reflecting the interdependence of voltage and current
in electrical circuits.
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Example 5.1. Consider the coupled multifractional nonlinear hybrid differential equations with
coupled boundary conditions:

C 20.7:6*| H 170.4.0.8:2¢ w(e)
l)O+ [ l)O+ (gl(g, QO(S),p(S))) + /11 QO(("))

C 0.8:8% | H 10.6,0.3:2¢ p(e)
Dy [ Dy. (g2 .pe). @ (8))) + A,p(e)

= f, (&, ¢(&), p(&)),

= f,(e.p(e), p(e)), € € [0, 1],

5 3 (5.1
¢(0) =0, w(l) = < p(z),
p(0) =0, p(1) = 5 (g)

Here,
0,=07, a, =04, g, =038, 6,=08, o, =0.6, g, =0.3,

2 3 1

5
a—o b—l é’l_—’O' :Z’ gz:i’ 0'225, Q//l(g)zgz’ 1//2(8):28.

(1) Consider the functions g,, g,, f,, and f,,

sin |¢| lol N 2
3+ 1+|o]

g, (&, ¢(e),p(e) =

cos |p| 4
+ || + =,

ol 5
[ |l N 2 ol ]

18 +&2l1 + gl 1+|ol)

_2e+37 ol
fep(e), 6(e)) = s | o] |

8,(&,p(e), () =

fi(e, 0(e),p(e)) =

and let 4, = 0.02, 4, = 0.03.
For (¢, p), (p,p) € &, we obtain

1

|1, (&; @(e), p(e)) — (&, @(e), p(e))] < §(|90 — @l +1p - pl),
5

1. (&, p(€), @(£)) — £, (&, p(€), p(e))] < g(lp —pl+ o — &),

1
g, (&, p(£), p(&)) — 8, (&, @(&), ple))] < §(|<P — @l +lo-pl),

1
18, (& p(€), p(&)) = &,(&, p(e), P(e))] < Z(Ip —pl+lo - &),

(e plohpN < 15(1ez) (T30

5
(e plohpN < 3 (50 ol

where
5

1
I\l = 55 lIp.ll = ,q(|<p|>—(1'f'| ) @b = (2'f'| ) e = (H"l"l), r,(loD) = lgl.
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(H,) and (H3) are satisfied with

1 5 1
-Efl 25, sz Zg, ~£gl Zg, .Eg =

We compute
Q= 59518 # 0, le ~ 0.1945, and sz ~ 0.3702.

Thus, we have
A= (Lg1 + £g2)Qw ~ 0.3294 < 1.

As a result, the hypothesis of Theorem 4.1 is satisfied and (5.1) has at least one solution on 7.
The numerical results and graphical representation of A for various values of ¢ € [0, 1] and orders
@,,9,,q,,0, are shown in Table 1 and Figure 1, respectively.

Table 1. A for different values of «,, 6,, @,, and 9,.

A

L |=05 2, =076 =055 a,=075[5,=06 a,=08 5 =065 a =085 =07, a =09,

6,=05 a,=07 | 6=055 =075 |6 =06 a =08 | 5,=065 a, =085 | 5 =07, a, =09
0 0.1850 0.1798 0.1740 0.1679 0.1616
0.1 0.2252 0.2140 0.2031 0.1926 0.1824
0.2 0.2502 0.2373 0.2247 0.2124 0.2005
0.3 0.2717 0.2578 0.2441 0.2307 0.2177
0.4 0.2910 0.2765 0.2622 0.2481 0.2343
0.5 0.3089 0.2942 0.2794 0.2648 0.2505
0.6 0.3257 0.3110 0.2960 0.2810 0.2663
0.7 0.3418 0.3270 0.3120 0.2969 0.2819
0.8 0.3571 0.3425 0.3276 0.3124 0.2973
0.9 0.3719 0.3576 0.3427 0.3276 0.3124
1 0.3862 0.3722 0.3576 0.3426 0.3274

We observe that for an increase in time, A increases gradually, and for an increase in order, A
decreases gradually and is clearly less than 1. The results are graphically presented in Figure 1.

0.4
0.35
0.3
0.25
0.2

1.4

- 1 1.5
le Order

Figure 1. Representation of impact of fractional order ¢, ¢,, @,, and 6, on A.
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(1) Consider the functions g,, g,, f,, and f,,

8.(&, (&), p(e) = &, g,(e,0(e), p(e) = &, f (& ¢(e),p(e) =1, f,(&,p(e),pe)) = 1.

Using Picard’s approximation technique, under consideration of the above functions g,, g,, f,,
and f,, we have approximated the solution of the system (5.1) in the time interval [0,1]. The
convergence is obtained in the fifth iteration. Figure 2 is a graphical representation of the approximate
coupled solution to the system (5.1).

35
— % —an
g | = = ¥
/
2.5 .
. /%
2 /
S 2r /
g *
b /
3 15¢F .
bt *
o) 7
s 1 *
8 -
(&) K ES
0.5 o - o -
ok =% - w7
== —
Tk e e — e —
0.5 L L L L
0 0.2 0.4 0.6 0.8 1

T e [0,1]
Figure 2. Solution of the system (5.1).

6. Conclusions

In this article, we considered the coupled system of multifractional HDEs with coupled boundary
conditions. The system consists of a mixed type of fractional derivatives involving the ¢-Caputo
and y,-Hilfer fractional derivatives. The fractional derivatives with different kernels in a differential
equation provided a flexible and powerful tool for capturing a wide range of memory and nonlocal
effects in complex systems. The existence of the solution was established with the aid of the Dhage-
fixed point theorem. We emphasized our findings by providing an example. Also, we had obtained the
approximate solution of the system through a numerical approach, which was represented graphically.
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