Quadrics are important in finite geometry and can be used to construct binary codes. In this paper, we first define an incidence matrix $ M $ based on points and non-degenerate quadrics in the classical projective space PG$ (n-1, q) $, where $ q $ is a prime power. As a consequence, we establish a binary code $ C(M) $ with the generator matrix $ M $ and determine the dimension of $ C(M) $ when $ q $ and $ n $ are both odd. In particular, we study the minimum distances of $ C(M) $ and $ C^{\perp}(M) $ in PG$ (2, q) $ and give their upper bounds.
Citation: Lijun Ma, Shuxia Liu, Zihong Tian. The binary codes generated from quadrics in projective spaces[J]. AIMS Mathematics, 2024, 9(10): 29333-29345. doi: 10.3934/math.20241421
Quadrics are important in finite geometry and can be used to construct binary codes. In this paper, we first define an incidence matrix $ M $ based on points and non-degenerate quadrics in the classical projective space PG$ (n-1, q) $, where $ q $ is a prime power. As a consequence, we establish a binary code $ C(M) $ with the generator matrix $ M $ and determine the dimension of $ C(M) $ when $ q $ and $ n $ are both odd. In particular, we study the minimum distances of $ C(M) $ and $ C^{\perp}(M) $ in PG$ (2, q) $ and give their upper bounds.
[1] | K. Abdukhalikov, D. Ho, Linear codes from arcs and quadrics, Des. Codes Cryptogr., 2023. https://doi.org/10.1007/s10623-023-01255-z |
[2] | M. Adams, J. H. Wu, $2$-Ranks of incidence matrices associated with conics in finite projective planes, Des. Codes Cryptogr., 72 (2014), 381–404. https://doi.org/10.1007/s10623-012-9772-5 doi: 10.1007/s10623-012-9772-5 |
[3] | M. Bonini, M. Borello, Minimal linear codes arising from blocking sets, J. Algebr. Comb., 53 (2021), 327–341. https://doi.org/10.1007/s10801-019-00930-6 doi: 10.1007/s10801-019-00930-6 |
[4] | R. D. Baker, J. M. N. Brown, G. L. Ebert, J. C. Fisher, Projective bundles, Bull. Belg. Math. Soc., 3 (1994), 329–336. https://doi.org/10.36045/bbms/1103408578 |
[5] | B. Bagchi, S. P. Inamdar, Projective geometric codes, J. Combin. Theory Ser. A, 99 (2002), 128–142. https://doi.org/10.1006/jcta.2002.3265 |
[6] | M. Bonini, S. Lia, M. Timpanella, Minimal linear codes from Hermitian varieties and quadrics, Appl. Algebra Engrg. Comm. Comput., 34 (2023), 201–210. https://doi.org/10.1007/s00200-021-00500-z doi: 10.1007/s00200-021-00500-z |
[7] | J. Bariffi, S. Mattheus, A. Neri, J. Rosenthal, Moderate-density parity-check codes from projective bundles, Des. Codes Cryptogr., 90 (2022), 2943–2966. https://doi.org/10.1007/s10623-022-01054-y doi: 10.1007/s10623-022-01054-y |
[8] | P. V. Ceccherini, J. W. P. Hirschfeld, The dimension of projective geometry codes, Discrete Math., 106–107 (1992), 117–126. https://doi.org/10.1016/0012-365X(92)90538-Q doi: 10.1016/0012-365X(92)90538-Q |
[9] | S. V. Droms, K. E. Mellinger, C. Meyer, LDPC codes generated by conics in the classical projective plane, Des. Codes Cryptogr., 40 (2006), 343–356. https://doi.org/10.1007/s10623-006-0022-6 doi: 10.1007/s10623-006-0022-6 |
[10] | R. Elman, N. Karpenko, A. Merkurjev, The algebraic and geometric theory of quadratic forms, AMS Colloquium Publishing, 2008. https://doi.org/10.1090/coll2F056 |
[11] | V. Fack, S. L. Fancsali, L. Storme, G. Van de Voorde, J. Winne, Small weight codewords in the codes arising from Desarguesian projective planes, Des. Codes Cryptogr., 46 (2008), 25–43. https://doi.org/10.1007/s10623-007-9126-x doi: 10.1007/s10623-007-9126-x |
[12] | K. Q. Feng, Algebraic theory of error-correcting codes (Chinese), Beijing: Tsinghua University Press, 2005. |
[13] | J. W. P. Hirschfeld, J. A. Thas, General Galois Geometries, London: Springer-Verlag, 2016. https://doi.org/10.1007/978-1-4471-6790-7 |
[14] | Z. L. Heng, C. S. Ding, The subfield codes of hyperoval and conic codes, Finite Fields Appl., 56 (2019), 308–331. https://doi.org/10.1016/j.ffa.2018.12.006 doi: 10.1016/j.ffa.2018.12.006 |
[15] | M. Lavrauw, L. Storme, G. Van de Voorde, On the code generated by the incidence matrix of points and hyperplanes in PG$(n, q)$ and its dual, Des. Codes Cryptogr., 48 (2008), 231–245. https://doi.org/10.1007/s10623-008-9203-9 doi: 10.1007/s10623-008-9203-9 |
[16] | M. Lavrauw, L. Storme, G. Van de Voorde, On the code generated by the incidence matrix of points and $k$-spaces in PG$(n, q)$ and its dual, Finite Fields Appl., 14 (2008), 1020–1038. https://doi.org/10.1016/j.ffa.2008.06.002 doi: 10.1016/j.ffa.2008.06.002 |
[17] | S. Liu, C. Zhang, G. Meng, M. Wang, The subspace representations of finite field and its applications, J. Math. Res. Expo., 28 (2008), 1021–1026. |
[18] | K. H. Leung, Q. Xing, On the dimensions of the binary codes of a class of unitals, Discrete Math., 309 (2009), 570–575. https://doi.org/10.1016/j.disc.2008.08.004 doi: 10.1016/j.disc.2008.08.004 |
[19] | A. L. Madison, J. H. Wu, On binary codes from conics in PG$(2, q)$, European J. Combin., 33 (2012), 33–48. https://doi.org/10.1016/j.ejc.2011.08.001 doi: 10.1016/j.ejc.2011.08.001 |
[20] | A. L. Madison, J. H. Wu, Conics arising from external points and their binary codes, Des. Codes Cryptogr., 78 (2016), 473–491. https://doi.org/10.1007/s10623-014-0013-y doi: 10.1007/s10623-014-0013-y |
[21] | O. Polverino, F. Zullo, Codes arising from incidence matrices of points and hyperplanes in PG$(n, q)$, J. Combin. Theory Ser. A, 158 (2018), 1–11. https://doi.org/10.1016/j.jcta.2018.03.013 doi: 10.1016/j.jcta.2018.03.013 |
[22] | H. Shen, Theory of combinatorial design (Chinese), Shanghai: Shanghai Jiaotong University Press, 2008. |
[23] | P. Sin, J. Sorci, Q. Xiang, Linear representations of finite geometries and associated LDPC codes, J. Combin. Theory Ser. A, 173 (2020), 105238. https://doi.org/10.1016/j.jcta.2020.105238 doi: 10.1016/j.jcta.2020.105238 |
[24] | P. Sin, Q. Xiang, On the dimensions of certain LDPC codes based on $q$-regular bipartite graphs, IEEE Trans. Inform. Theory, 52 (2006), 3735–3737. https://ieeexplore.ieee.org/document/1661850 |
[25] | P. Sin, J. Wu, Q. Xiang, Dimensions of some binary codes aring from a conic in PG$(2, q)$, J. Combin. Theory Ser. A, 118 (2011), 853–878. https://doi.org/10.1016/j.jcta.2010.11.010 doi: 10.1016/j.jcta.2010.11.010 |
[26] | Z. X. Wan, Geometry of classical groups over finite fields, Beijing-New York: Science Press, 2002. |
[27] | J. H. Wu, Conics arising from internal points and their binary codes, Linear Algebra Appl., 439 (2013), 422–434. https://doi.org/10.1016/j.laa.2013.04.004 doi: 10.1016/j.laa.2013.04.004 |
[28] | J. H. Wu, Proofs of two conjectures on the dimensions of binary codes, Des. Codes Cryptogr., 70 (2014), 273–304. https://doi.org/10.1007/s10623-012-9682-6 doi: 10.1007/s10623-012-9682-6 |
[29] | X. Wu, W. Lu, X. W. Cao, G. J. Luo, Minimal linear codes constructed from partial spreads, Cryptogr. Commun., 16 (2024), 601–611. https://doi.org/10.1007/s12095-023-00689-5 doi: 10.1007/s12095-023-00689-5 |
[30] | X. H. Xie, Y. Ouyang, M. Mao, Vectorial bent functions and linear codes from quadratic forms, Cryptogr. Commun., 15 (2023), 1011–1029. https://doi.org/10.1007/s12095-023-00664-0 doi: 10.1007/s12095-023-00664-0 |
[31] | Z. C. Zhou, N. Li, C. L. Fan, T. Helleseth, Linear codes with two or three weights from quadratic bent functions, Des. Codes Cryptogr., 81 (2016), 283–295. https://doi.org/10.1007/s10623-015-0144-9 doi: 10.1007/s10623-015-0144-9 |