Research article Special Issues

New classes of few-weight ternary codes from simplicial complexes

  • Received: 16 September 2021 Revised: 14 November 2021 Accepted: 21 November 2021 Published: 20 December 2021
  • MSC : 94A60, 94B05

  • In this article, we describe two classes of few-weight ternary codes, compute their minimum weight and weight distribution from mathematical objects called simplicial complexes. One class of codes described here has the same parameters with the binary first-order Reed-Muller codes. A class of (optimal) minimal linear codes is also obtained in this correspondence.

    Citation: Yang Pan, Yan Liu. New classes of few-weight ternary codes from simplicial complexes[J]. AIMS Mathematics, 2022, 7(3): 4315-4325. doi: 10.3934/math.2022239

    Related Papers:

  • In this article, we describe two classes of few-weight ternary codes, compute their minimum weight and weight distribution from mathematical objects called simplicial complexes. One class of codes described here has the same parameters with the binary first-order Reed-Muller codes. A class of (optimal) minimal linear codes is also obtained in this correspondence.



    加载中


    [1] M. Adamaszek, Face numbers of down-sets, Amer. Math. Mon., 122 (2015), 367–370.
    [2] G. T. Bogdanova, I. G. Boukliev, New linear codes of dimension 5 over GF(3), In: Proceedings of the fourth International Workshop on Algebraic and Combinatorial Coding Theory, 1994, 41–43.
    [3] S. Chang, J. Y. Hyun, Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167–2181. https://doi.org/10.1007/s10623-017-0442-5 doi: 10.1007/s10623-017-0442-5
    [4] C. S. Ding, D. Kohel, S. Ling, Elementary 2-group character codes, IEEE T. Inform. Theory, 46 (2000), 280–284. https://doi.org/10.1109/18.817529 doi: 10.1109/18.817529
    [5] J. Y. Hyun, H. K. Kimb, M. Nac, Optimal non-projective linear codes constructed from down-sets, Discrete Appl. Math., 254 (2019), 135–145. https://doi.org/10.1016/j.dam.2018.07.007 doi: 10.1016/j.dam.2018.07.007
    [6] N. Hamada, T. Helleseth, Ø. Ytrehus, The nonexistence of [51; 5; 33; 3]-codes, Ars Combinat., 25 (1993), 25–32.
    [7] J. Y. Hyun, J. Lee, Y. Lee, Infinite families of optimal linear codes constructed from simplicial complexes, IEEE T. Inform. Theory, 66 (2020), 6762–6773. https://doi.org/10.1109/TIT.2020.2993179 doi: 10.1109/TIT.2020.2993179
    [8] M. J. Shi, X. X. Li, Two classes of optimal p-ary few-weight codes from down-sets, Discrete Appl. Math., 290 (2021), 60–67. https://doi.org/10.1016/j.dam.2020.10.027 doi: 10.1016/j.dam.2020.10.027
    [9] M. van Eupen, Four nonexistence results for ternary linear codes, IEEE T. Inform. Theory, 41 (1995), 800–805. https://doi.org/10.1109/18.382031 doi: 10.1109/18.382031
    [10] M. van Eupen, Some new results for ternary linear codes of dimension 5 and 6, IEEE T. Inform. Theory, 41 (1995), 2048–2051. https://doi.org/10.1109/18.476334 doi: 10.1109/18.476334
    [11] M. van Eupen, J. H. van Lint, On the minimum distance of ternary cyclic codes, IEEE T. Inform. Theory, 39 (1993), 409–422. https://doi.org/10.1109/18.212272 doi: 10.1109/18.212272
    [12] Y. S. Wu, X. M. Zhu, Q. Yue, Optimal few-weight codes from simplicial complexes, IEEE T. Inform. Theory, 66 (2020), 3657–3663. https://doi.org/10.1109/TIT.2019.2946840 doi: 10.1109/TIT.2019.2946840
    [13] X. M. Zhu, Y. J. Wei, Few-weight quaternary codes via simplicial complexes, AIMS Mathematics, 6 (2021), 5124–5132. https://doi.org/10.3934/math.2021303 doi: 10.3934/math.2021303
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1653) PDF downloads(76) Cited by(1)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog