Research article

Weight distributions for projective binary linear codes from Weil sums

  • Received: 28 January 2021 Accepted: 01 June 2021 Published: 07 June 2021
  • MSC : 94B15, 11T71

  • A class of projective binary linear codes are constructed and their weight distributions are investigated using Weil sums. They have at most three nonzero weights, containing some optimal codes. Their dual codes are also studied and some of them are either optimal or almost optimal.

    Citation: Shudi Yang, Zheng-An Yao. Weight distributions for projective binary linear codes from Weil sums[J]. AIMS Mathematics, 2021, 6(8): 8600-8610. doi: 10.3934/math.2021499

    Related Papers:

  • A class of projective binary linear codes are constructed and their weight distributions are investigated using Weil sums. They have at most three nonzero weights, containing some optimal codes. Their dual codes are also studied and some of them are either optimal or almost optimal.



    加载中


    [1] J. Ahn, D. Ka, C. Li, Complete weight enumerators of a class of linear codes, Design. Code. Cryptogr., 83 (2017), 83-99. doi: 10.1007/s10623-016-0205-8
    [2] I. F. Blake, K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171. doi: 10.1137/0404016
    [3] A. R. Calderbank, J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.
    [4] R. Calderbank, W. M. Kanter, The geometry of two-weight codes, Bull. Lond. Math. Soc., 18 (1986), 97-122. doi: 10.1112/blms/18.2.97
    [5] P. Charpin, Cyclic codes with few weights and Niho exponents, J. Comb. Theory A, 108 (2004), 247-259. doi: 10.1016/j.jcta.2004.07.001
    [6] R. S. Coulter, Further evaluations of Weil sums, Acta Arithmetica, 86 (1998), 217-226. doi: 10.4064/aa-86-3-217-226
    [7] R. S. Coulter, On the evaluation of a class of Weil sums in characteristic $ 2 $, New Zealand J. Math., 28 (1999), 171-184.
    [8] P. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math., 3 (1972), 47-64. doi: 10.1016/0012-365X(72)90024-6
    [9] L. Diao, J. Gao, J. Lu, Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes, Adv. Math. Commun., 14 (2020), 555-572. doi: 10.3934/amc.2020029
    [10] C. Ding, J. Yin, A construction of optimal constant composition codes, Design. Code. Cryptogr., 40 (2006), 157-165. doi: 10.1007/s10623-006-0004-8
    [11] C. Ding, T. Helleseth, T. Kløve, X. Wang, A generic construction of Cartesian authentication codes, IEEE T. Inform. Theory, 53 (2007), 2229-2235. doi: 10.1109/TIT.2007.896872
    [12] C. Ding, The construction and weight distributions of all projective binary linear codes, (2020). Available from: arXiv: 2010.03184.
    [13] K. Ding, C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882. doi: 10.1109/LCOMM.2014.2361516
    [14] K. Ding, C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE T. Inform. Theory, 61 (2015), 5835-5842. doi: 10.1109/TIT.2015.2473861
    [15] S. T. Dougherty, J. Gildea, A. Kaya, B. Yildiz, New self-dual and formally self-dual codes from group ring constructions, Adv. Math. Commun., 14 (2020), 11-22. doi: 10.3934/amc.2020002
    [16] V. Guruswami, M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometry codes, IEEE T. Inform. Theory, 45 (1999), 1757-1767. doi: 10.1109/18.782097
    [17] Z. Heng, C. Ding, Z. Zhou, Minimal linear codes over finite fields, Finite Fields Appl., 54 (2018) 176-196.
    [18] Z. Heng, W. Wang, Y. Wang, Projective binary linear codes from special Boolean functions, Appl. Algebr. Eng. Comm. Comput. (2020), Available from: https://doi.org/10.1007/s00200-019-00412-z.
    [19] X. Huang, Q. Yue, Y. Wu, X. Shi, J. Michel, Binary primitive LCD BCH codes, Design. Code. Cryptogr., 88 (2020), 2453-2473. doi: 10.1007/s10623-020-00795-y
    [20] W. C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge: Cambridge University Press, 2003.
    [21] G. Jian, Z. Lin, R. Feng, Two-weight and three-weight linear codes based on Weil sums, Finite Fields Th. Appl., 57 (2019), 92-107. doi: 10.1016/j.ffa.2019.02.001
    [22] X. Kong, S. Yang, Complete weight enumerators of a class of linear codes with two or three weights, Discrete Math., 342 (2019), 3166-3176. doi: 10.1016/j.disc.2019.06.025
    [23] C. Li, S. Bae, J. Ahn, S. Yang, Z. Yao, Complete weight enumerators of some linear codes and their applications, Design. Code. Cryptogr., 81 (2016), 153-168. doi: 10.1007/s10623-015-0136-9
    [24] C. Li, Q. Yue, F. Fu, A construction of several classes of two-weight and three-weight linear codes, Appl. Algebra Eng. Comm. Comput., 28 (2017), 11-30. doi: 10.1007/s00200-016-0297-4
    [25] N. Li, S. Mesnager, Recent results and problems on constructions of linear codes from cryptographic functions, Cryptog. Commun., 12 (2020), 965-986. doi: 10.1007/s12095-020-00435-1
    [26] R. Lidl, H. Niederreiter, Finite Fields, 2 Eds., Cambridge: Cambridge University Press, 1997.
    [27] G. Mcguire, On three weights in cyclic codes with two zeros, Finite Fields Th. Appl., 10 (2004), 97-104. doi: 10.1016/S1071-5797(03)00045-5
    [28] S. Mesnager, Linear codes from functions, Chapter 20 in Concise Encyclopedia of Coding Theory, London: CRC Press/Taylor and Francis Group, 2021.
    [29] M. Shi, R. Wu, Y. Liu, P. Solé, Two and three weight codes over $ \mathbb{F}_p+u \mathbb{F}_p $, Cryptog. Commun., 9 (2017), 637-646. doi: 10.1007/s12095-016-0206-5
    [30] M. Shi, Y. Guan, P. Solé, Two new families of two-weight codes, IEEE T. Inform. Theory, 63 (2017), 6240-6246. doi: 10.1109/TIT.2017.2742499
    [31] M. Sudan, Decoding of Reed-Solomon codes beyond the error-correction bound, J. Complexity, 13 (1997), 180-193. doi: 10.1006/jcom.1997.0439
    [32] Y. Wu, Q. Yue, X. Zhu, S. Yang, Weight enumerators of reducible cyclic codes and their dual codes, Discrete Math., 342 (2019), 671-682. doi: 10.1016/j.disc.2018.10.035
    [33] Y. Wu, Q. Yue, X. Shi, At most three-weight binary linear codes from generalized Moisio's exponential sums, Design. Code. Cryptogr., 87 (2019), 1927-1943. doi: 10.1007/s10623-018-00595-5
    [34] S. Yang, Z. Yao, C. Zhao, The weight enumerator of the duals of a class of cyclic codes with three zeros, Appl. Algebra Eng. Commun. Comput., 26 (2015), 347-367. doi: 10.1007/s00200-015-0255-6
    [35] S. Yang, Z. Yao, C. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Fields Th. Appl., 44 (2017), 76-91. doi: 10.1016/j.ffa.2016.11.004
    [36] S. Yang, X. Kong, C. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields Th. Appl., 48 (2017), 196-226. doi: 10.1016/j.ffa.2017.08.001
    [37] S. Yang, Z. Yao, Complete weight enumerators of a class of linear codes, Discrete Math., 340 (2017), 729-739. doi: 10.1016/j.disc.2017.01.001
    [38] J. Yuan, C. Ding, Secret sharing schemes from three classes of linear codes, IEEE T. Inform. Theory, 52 (2006), 206-212. doi: 10.1109/TIT.2005.860412
    [39] Z. Zhou, C. Ding, J. Luo, A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE T. Inform. Theory, 59 (2013), 6674-6682. doi: 10.1109/TIT.2013.2267722
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2332) PDF downloads(100) Cited by(0)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog