Research article Special Issues

Analysis of a finite difference scheme for a nonlinear Caputo fractional differential equation on an adaptive grid

  • Received: 25 April 2021 Accepted: 02 June 2021 Published: 07 June 2021
  • MSC : 65L05, 65L12, 65L20

  • A nonlinear initial value problem whose differential operator is a Caputo derivative of order $ \alpha $ with $ 0 < \alpha < 1 $ is studied. By using the Riemann-Liouville fractional integral transformation, this problem is reformulated as a Volterra integral equation, which is discretized by using the right rectangle formula. Both a priori and an a posteriori error analysis are conducted. Based on the a priori error bound and mesh equidistribution principle, we show that there exists a nonuniform grid that gives first-order convergent result, which is robust with respect to $ \alpha $. Then an a posteriori error estimation is derived and used to design an adaptive grid generation algorithm. Numerical results complement the theoretical findings.

    Citation: Yong Zhang, Xiaobing Bao, Li-Bin Liu, Zhifang Liang. Analysis of a finite difference scheme for a nonlinear Caputo fractional differential equation on an adaptive grid[J]. AIMS Mathematics, 2021, 6(8): 8611-8624. doi: 10.3934/math.2021500

    Related Papers:

  • A nonlinear initial value problem whose differential operator is a Caputo derivative of order $ \alpha $ with $ 0 < \alpha < 1 $ is studied. By using the Riemann-Liouville fractional integral transformation, this problem is reformulated as a Volterra integral equation, which is discretized by using the right rectangle formula. Both a priori and an a posteriori error analysis are conducted. Based on the a priori error bound and mesh equidistribution principle, we show that there exists a nonuniform grid that gives first-order convergent result, which is robust with respect to $ \alpha $. Then an a posteriori error estimation is derived and used to design an adaptive grid generation algorithm. Numerical results complement the theoretical findings.



    加载中


    [1] R. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Redding, 2006.
    [2] A. Kaur, P. S. Takhar, D. M. Smith, J. E. Mann, M. M. Brashears, Fractional differential equations based modeling of microbial survival and growth curves: Model development and experimental validation, Food Eng. Phy. Properties, 73 (2008), 403-414.
    [3] D. Lokenath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413-3442.
    [4] P. A. Naik, J. Zu, K. M. Owolabi, Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Physica A., 545 (2020), 123816. doi: 10.1016/j.physa.2019.123816
    [5] P. A. Naik, J. Zu, K. M. Owolabi, Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos. Solition. Fract., 138 (2020), 109826. doi: 10.1016/j.chaos.2020.109826
    [6] P. A. Naik, K. M. Owolabi, M. Yavuz, Z. Jian, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos. Solition. Fract., 140 (2020), 110272 doi: 10.1016/j.chaos.2020.110272
    [7] K. M. Owolabi, B. Karaagac, Dynamics of multi-puls splitting process in one-dimensional Gray-Scott system with fractional order operator, Chaos. Soliton. Fract., 136 (2020), 109835. doi: 10.1016/j.chaos.2020.109835
    [8] C. Li, F. Zeng, The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34 (2013), 149-179. doi: 10.1080/01630563.2012.706673
    [9] M. Stynes, J. L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35 (2015), 698-721. doi: 10.1093/imanum/dru011
    [10] S. Vong, P. Lyu, X. Chen, S.-L. Lei, High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives, Numer. Algorithm., 72 (2016), 195-210. doi: 10.1007/s11075-015-0041-3
    [11] K. M. Owolabi, Numerical simulation of fractional-order reaction-diffusion equations with the Riesz and Caputo derivatives, Neural. Comput. Appl., 2019. Available from: https://doi.org/10.1007/s00521-019-04350-2.
    [12] K. Nedaiasl, R. Dehbozorgi, Galerkin finite element method for nonlinear fractional differential equations, Numer. Algorithms., 2021. Available from: https://doi.org/10.1007/s11075-020-01032-2.
    [13] H. Liang, M. Stynes, Collocation methods for general Caputo two-point boundary value problems, J. Sci. Comput., 76 (2018), 390-425. doi: 10.1007/s10915-017-0622-5
    [14] H. Liang, M. Stynes, Collocation methods for general Riemann-Liouville two-point boundary value problems, Adv. Comput. Math., 45 (2019), 897-928. doi: 10.1007/s10444-018-9645-1
    [15] N. Kopteva, M. Stynes, An efficient collocation method for a Caputo two-point boundary value problem, BIT Numer. Math., 55 (2015), 1105-1123. doi: 10.1007/s10543-014-0539-4
    [16] C. Wang, Z. Wang, L. Wang, A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative, J. Sci. Comput., 76 (2018), 166-188. doi: 10.1007/s10915-017-0616-3
    [17] Z. Gu, Spectral collocation method for nonlinear Caputo fractional differential system, Adv. Comput. Math., 46 (2020), 66. doi: 10.1007/s10444-020-09808-9
    [18] M. Stynes, J. L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35 (2015), 698-721. doi: 10.1093/imanum/dru011
    [19] J. Gracia, M. Stynes, Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems, J. Comput. Appl. Math., 273 (2015), 103-115. doi: 10.1016/j.cam.2014.05.025
    [20] M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057-1079. doi: 10.1137/16M1082329
    [21] H. Liao, W. Mclean, J. Zhang, A discrete Grönwall inequality with applications to numerical scheme for sudiffusion problems, SIAM J. Numer. Anal., 57 (2019), 218-237. doi: 10.1137/16M1175742
    [22] J. L. Gracia, E. O'Riordan, M. Stynes, A fitted scheme for a Caputo initial-boundary value problem, J. Sci. Comput., 76 (2018), 583-609. doi: 10.1007/s10915-017-0631-4
    [23] N. Kopteva, X. Meng, Error analysis for a fractional-derivative parabolic problem on quasi-graded meshes using barrier function, SIAM J. Numer. Anal., 2020, 58 (2020), 1217-1238.
    [24] Z. Cen, L. B. Liu, J. Huang, A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative, Appl. Math. Lett., 102 (2020), 106086. doi: 10.1016/j.aml.2019.106086
    [25] L. B. Liu, Z. Liang, G. Long, Y. Liang, Convergence analysis of a finite difference scheme for a Riemann-Liouville fractional derivative two-point boundary value problem on an adaptive grid, J. Comput. Appl. Math., 375 (2020), 112809. doi: 10.1016/j.cam.2020.112809
    [26] J. Huang, Z. Cen, L. B. Liu, J. Zhao, An efficient numerical method for a Riemann-Liouville two-point boundary value problem, Appl. Math. Lett., 103 (2020), 106201. doi: 10.1016/j.aml.2019.106201
    [27] Z. Cen, A. Le, A. Xu, A posteriori error analysis for a fractional differential equation, Int. J. Comput. Math., 94 (2017), 1182-1195.
    [28] L. B. Liu, Y. Chen, A posteriori error estimation and adaptive strategy for a nonlinear fractional differential equation, Int. J. Comput. Math., 2021. Available from: https://doi.org/10.1080/00207160.2021.1906420.
    [29] K. Diethelm, The analysis of fractional differential equations. Springer, Berlin, 2010.
    [30] C. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear differential equations, J. Comput. Phys., 316 (2016), 614-631. doi: 10.1016/j.jcp.2016.04.039
    [31] H. Ye, J. Gao, Y. Ding, A generalized Grönwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2823) PDF downloads(179) Cited by(4)

Article outline

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog