Research article

Learning capability of the rescaled pure greedy algorithm with non-iid sampling


  • Received: 24 August 2022 Revised: 07 December 2022 Accepted: 14 December 2022 Published: 11 January 2023
  • We consider the rescaled pure greedy learning algorithm (RPGLA) with the dependent samples drawn according to a non-identical sequence of probability distributions. The generalization performance is provided by applying the independent-blocks technique and adding the drift error. We derive the satisfactory learning rate for the algorithm under the assumption that the process satisfies stationary $ \beta $-mixing, and also find that the optimal rate $ O(n^{-1}) $ can be obtained for i.i.d. processes.

    Citation: Qin Guo, Binlei Cai. Learning capability of the rescaled pure greedy algorithm with non-iid sampling[J]. Electronic Research Archive, 2023, 31(3): 1387-1404. doi: 10.3934/era.2023071

    Related Papers:

  • We consider the rescaled pure greedy learning algorithm (RPGLA) with the dependent samples drawn according to a non-identical sequence of probability distributions. The generalization performance is provided by applying the independent-blocks technique and adding the drift error. We derive the satisfactory learning rate for the algorithm under the assumption that the process satisfies stationary $ \beta $-mixing, and also find that the optimal rate $ O(n^{-1}) $ can be obtained for i.i.d. processes.



    加载中


    [1] J. Fang, S. B. Lin, Z. B. Xu, Learning and approximation capabilities of orthogonal super greedy algorithm, Knowl-Based Syst., 95 (2016), 86–98. https://doi.org/10.1016/j.knosys.2015.12.011 doi: 10.1016/j.knosys.2015.12.011
    [2] H. Chen, L. Q. Li, Z. B. Pan, Learning rates of multi-kernel regression by orthogonal greedy algorithm, J. Stat. Plan. Infer., 143 (2013), 276–282. https://doi.org/10.1016/j.jspi.2012.08.002 doi: 10.1016/j.jspi.2012.08.002
    [3] S. B. Lin, Y. H. Rong, X. P. Sun, Z. B. Xu, Learning capability of relaxed greedy algorithms, IEEE Trans. Neur. Net. Lear., 24 (2013), 1598–1608. https://doi.org/10.1109/TNNLS.2013.2265397 doi: 10.1109/TNNLS.2013.2265397
    [4] L. Xu, S. B. Lin, Z. B. Xu, Learning capability of the truncated greedy algorithm, Sci. China Inform. Sci. 59 (2016), 052103. https://doi.org/10.1007/s11432-016-5536-6
    [5] A. R. Barron, A. Cohen, W. Dahmen, R. A. DeVore, Approximation and learning by greedy algorithms, Ann. Statist., 36 (2008), 64–94. https://doi.org/10.1214/009053607000000631 doi: 10.1214/009053607000000631
    [6] L. Xu, S. B. Lin, J. S. Zeng, X. Liu, Z. B. Xu, Greedy criterion in orthogonal greedy learning, IEEE Trans. Cybernetics, 48 (2018), 955–966. https://doi.org/10.1109/TCYB.2017.2669259 doi: 10.1109/TCYB.2017.2669259
    [7] G. Petrova, Rescaled pure greedy algorithm for Hilbert and Banach spaces, Appl. Comput. Harmon. Anal., 41 (2016), 852–866. https://doi.org/10.1016/j.acha.2015.10.008 doi: 10.1016/j.acha.2015.10.008
    [8] S. G. Lv, D. M. Shi, Q. W. Xiao, M. S. Zhang, Sharp learning rates of coefficient-based $l^{q}$-regularized regression with indefinite kernels, Sci. China Math., 56 (2013), 1557–1574. https://doi.org/10.1007/s11425-013-4688-8 doi: 10.1007/s11425-013-4688-8
    [9] Y. L. Feng, S. G. Lv, Unified approach to coefficient-based regularized regression, Comput. Math. Appl., 62 (2011), 506–515. https://doi.org/10.1016/j.camwa.2011.05.034 doi: 10.1016/j.camwa.2011.05.034
    [10] W. L. Nie, C. Wang, Constructive analysis for coefficient regularization regression algorithms, J. Math. Anal. Appl., 431 (2015), 1153–1171. https://doi.org/10.1016/j.jmaa.2015.06.006 doi: 10.1016/j.jmaa.2015.06.006
    [11] H. W. Sun, Q. Wu, Least square regression with indefinite kernels and coefficient regularization, Appl. Comput. Harmon., 30 (2011), 96–109. https://doi.org/10.1016/j.acha.2010.04.001 doi: 10.1016/j.acha.2010.04.001
    [12] B. Schölkopf, A. Smola, Learning with Kernels, MIT Press, Cambridge, 2002.
    [13] C. J. Liu, Gabor-based kernel pca with fractional power polynomial models for face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), 572–581. https://doi.org/10.1109/TPAMI.2004.1273927 doi: 10.1109/TPAMI.2004.1273927
    [14] R. Opfer, Multiscale kernels, Adv. Comput. Math., 25 (2006), 357–380. https://doi.org/10.1007/s10444-004-7622-3
    [15] A. R. Barron, Universal approximation bounds for superposition of a sigmoidal function, IEEE Trans. Inform. Theory, 39 (1993), 930–945. https://doi.org/10.1109/18.256500 doi: 10.1109/18.256500
    [16] H. Chen, Y. C. Zhou, Y. Y. Tang, Convergence rate of the semi-supervised greedy algorithm, Neural Networks, 44 (2013), 44–50. https://doi.org/10.1016/j.neunet.2013.03.001 doi: 10.1016/j.neunet.2013.03.001
    [17] S. Smale, D. X. Zhou, Online learning with markov sampling, Anal. Appl., 7 (2009), 87–113. https://doi.org/10.1142/S0219530509001293 doi: 10.1142/S0219530509001293
    [18] Z. C. Guo, L. Shi, Classification with non-i.i.d. sampling, Math. Comput. Model., 54 (2011), 1347–1364. https://doi.org/10.1016/j.mcm.2011.03.042 doi: 10.1016/j.mcm.2011.03.042
    [19] Z. W. Pan, Q. W. Xiao, Least-square regularized regression with non-iid sampling, J. Stat. Plan. Infer., 139 (2009), 3579–3587. https://doi.org/10.1016/j.jspi.2009.04.007 doi: 10.1016/j.jspi.2009.04.007
    [20] R. C. Bradley, Basic properties of strong mixing conditions, Progr. Probab. Statist., 2 (1986), 165–192. https://doi.org/10.1007/978-1-4615-8162-8_8 doi: 10.1007/978-1-4615-8162-8_8
    [21] Q. Guo, P. X. Ye, B. L. Cai, Convergence Rate for $l^{q}$-Coefficient Regularized Regression With Non-i.i.d. Sampling, IEEE Access, 6 (2018), 18804–18813. https://doi.org/10.1109/ACCESS.2018.2817215 doi: 10.1109/ACCESS.2018.2817215
    [22] L. Shi, Y. L. Feng, D. X. Zhou, Concentration estimates for learning with $l^{1}$-regularizer and data dependent hypothesis spaces, Appl. Comput. Harmon. Anal., 31 (2011), 286–302. https://doi.org/10.1016/j.acha.2011.01.001 doi: 10.1016/j.acha.2011.01.001
    [23] B. Yu, Rates of convergence for empirical processes of stationary mixing sequences, Ann. Probab., 22 (1994), 94–116. https://www.jstor.org/stable/2244496
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1022) PDF downloads(82) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog