In this paper, a discrete predator-prey model incorporating Allee effect and cannibalism is derived from its continuous version by semidiscretization method. Not only the existence and local stability of fixed points of the discret system are investigated, but more important, the sufficient conditions for the occurrence of its period-doubling bifurcation and Neimark-Sacker bifurcation are obtained using the center manifold theorem and local bifurcation theory. Finally some numerical simulations are given to illustrate the existence of Neimark-Sacker bifurcation. The outcome of the study reveals that this discrete system undergoes various bifurcations including period-doubling bifurcation and Neimark-Sacker bifurcation.
Citation: Zhuo Ba, Xianyi Li. Period-doubling bifurcation and Neimark-Sacker bifurcation of a discrete predator-prey model with Allee effect and cannibalism[J]. Electronic Research Archive, 2023, 31(3): 1405-1438. doi: 10.3934/era.2023072
In this paper, a discrete predator-prey model incorporating Allee effect and cannibalism is derived from its continuous version by semidiscretization method. Not only the existence and local stability of fixed points of the discret system are investigated, but more important, the sufficient conditions for the occurrence of its period-doubling bifurcation and Neimark-Sacker bifurcation are obtained using the center manifold theorem and local bifurcation theory. Finally some numerical simulations are given to illustrate the existence of Neimark-Sacker bifurcation. The outcome of the study reveals that this discrete system undergoes various bifurcations including period-doubling bifurcation and Neimark-Sacker bifurcation.
[1] | B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Nat. Resour. Model., 3 (1989), 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x doi: 10.1111/j.1939-7445.1989.tb00119.x |
[2] | W. C. Allee, E. Bowen, Studies in animal aggregations mass protection against colloidal silver among goldfishes, J. Exp. Zool., 61 (1932), 185–207. https://doi.org/10.1002/jez.1400610202 doi: 10.1002/jez.1400610202 |
[3] | M. Kuussaari, I. Saccheri, M. Camara, I. Hanski, Allee effect and population dynamics in the glanville fritillary butterfly, Oikos, 82 (1998), 384–392. https://doi.org/10.2307/3546980 doi: 10.2307/3546980 |
[4] | F. Courchamp, B. T. Grenfell, T. H. Clutton-Brock, Impact of natural enemies on obligately cooperatively breeders, Oikos, 91 (2000), 311–322. https://doi.org/10.1034/j.1600-0706.2000.910212.x doi: 10.1034/j.1600-0706.2000.910212.x |
[5] | J. B. Ferdy, F. Austerlitz, J. Moret, P. H. Gouyon, B. Godelle, Pollinator-induced density dependence in deceptive species, Oikos, 87 (1999), 549–560. https://doi.org/10.2307/3546819 doi: 10.2307/3546819 |
[6] | D. H. Wise, Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations, Annu. Rev. Entomol., 51 (2006), 441–465. https://doi.org/10.1146/annurev.ento.51.110104.150947 doi: 10.1146/annurev.ento.51.110104.150947 |
[7] | D. Claessen, A. M. de Roos, Bistability in a size-structured population model of cannibalistic fish a continuation study, Theor. Popul. Biol., 64 (2003), 49–65. https://doi.org/10.1016/S0040-5809(03)00042-X doi: 10.1016/S0040-5809(03)00042-X |
[8] | V. Guttal, P. Romanczuk, S. J. Simpson, G. A. Sword, I. D. Couzin, Cannibalism can drive the evolution of behavioral phase polyphenism in locusts, Ecol. Lett., 15 (2012), 1158–1166. https://doi.org/10.1111/j.1461-0248.2012.01840.x doi: 10.1111/j.1461-0248.2012.01840.x |
[9] | M. Lloyd, Self regulation of adult numbers by cannibalism in two laboratory strains of flour beetles (Tribolium castaneum), Ecology, 49 (1968), 245–259. https://doi.org/10.2307/1934453 doi: 10.2307/1934453 |
[10] | M. L. Richardson, R. F. Mitchell, P. F. Reagel, L. M. Hanks, Causes and consequences of cannibalism in noncarnivorous insects, Annu. Rev. Entomol., 55 (2010), 39–53. https://doi.org/10.1146/annurev-ento-112408-085314 doi: 10.1146/annurev-ento-112408-085314 |
[11] | L. R. Fox, Cannibalism in natural populations, Annu. Rev. Ecol. Syst., 6 (1975), 87–106. https://doi.org/10.1146/annurev.es.06.110175.000511 doi: 10.1146/annurev.es.06.110175.000511 |
[12] | G. A. Polis, The evolution and dynamics of intraspecific predation, Annu. Rev. Ecol. Syst., 12 (1981), 225–251. https://doi.org/10.1146/annurev.es.12.110181.001301 doi: 10.1146/annurev.es.12.110181.001301 |
[13] | D. Claessen, A. M. de Roos, L. Persson, Population dynamic theory of size-dependent cannibalism, Proc. R. Soc. Lond., B(271) (2004), 333–340. https://doi.org/10.1098/rspb.2003.2555 doi: 10.1098/rspb.2003.2555 |
[14] | L. Pizzatto, R. Shine, The behavioral ecology of cannibalism in cane toads (Bufo marinus), Behav. Ecol. Sociobiol., 63 (2008), 123–133. https://doi.org/10.1007/s00265-008-0642-0 doi: 10.1007/s00265-008-0642-0 |
[15] | V. H. W. Rudolf, Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades, Ecology, 88 (2007), 2991–3003. https://doi.org/10.1890/07-0179.1 doi: 10.1890/07-0179.1 |
[16] | V. H. W. Rudolf, The interaction of cannibalism and omnivory: consequences for community dynamics, Ecology, 88 (2007), 2697–2705. https://doi.org/10.1890/06-1266.1 doi: 10.1890/06-1266.1 |
[17] | V. H. W. Rudolf, The impact of cannibalism in the prey on predator–prey systems, Ecology, 89 (2008), 3116–3127. https://doi.org/10.1890/08-0104.1 doi: 10.1890/08-0104.1 |
[18] | S. Biswas, S. Chatterjee, J. Chattopadhyay, Cannibalism may control disease in predator population: result drawn from a model based study, Math. Methods Appl. Sci., 38 (2015), 2272–2290. https://doi.org/10.1002/mma.3220 doi: 10.1002/mma.3220 |
[19] | B. Buonomo, D. Lacitignola, S. Rionero, Effect of prey growth and predator cannibalism rate on the stability of a structured population model, Nonlinear Anal. Real, 11 (2010), 1170–1181. https://doi.org/10.1016/j.nonrwa.2009.01.053 doi: 10.1016/j.nonrwa.2009.01.053 |
[20] | A. Basheer, E. Quansah, S. Bhowmick, R. D. Parshad, Prey cannibalism alters the dynamics of Holling–Tanner-type predator–prey models, Nonlinear Dyn., 85 (2016), 2549–2567. https://doi.org/10.1007/s11071-016-2844-8 doi: 10.1007/s11071-016-2844-8 |
[21] | A. Basheer, R. D. Parshad, E. Quansah, S. Yu, R. K. Upadhyay, Exploring the dynamics of a Holling–Tanner model with cannibalism in both predator and prey population, Int. J. Biomath., 11 (2018), 1850010. https://doi.org/10.1142/S1793524518500109 doi: 10.1142/S1793524518500109 |
[22] | H. Deng, F. Chen, Z. Zhu, Z. Li, Dynamic behaviors of Lotka–Volterra predator–prey model incorporating predator cannibalism, Adv. Differ. Equations, 359 (2019), 1–17. https://doi.org/10.1186/s13662-019-2289-8 doi: 10.1186/s13662-019-2289-8 |
[23] | F. Zhang, Y. Chen, J. Li, Dynamical analysis of a stage-structured predator–prey model with cannibalism, Math. Biosci., 307 (2019), 33–41. https://doi.org/10.1016/j.mbs.2018.11.004 doi: 10.1016/j.mbs.2018.11.004 |
[24] | M. Danca, S. Codreanu, B. Bako, Detailed analysis of a nonlinear prey–predator model, J. Biol. Phys., 23 (1997), 11–20. https://doi.org/10.1023/A:1004918920121 doi: 10.1023/A:1004918920121 |
[25] | S. M. S. Rana, Bifurcation and complex dynamics of a discrete-time predator-prey system, Comput. Ecol. Softw., 5 (2015), 187–200. https://doi.org/10.0000/issn-2220-721x-compuecol-2015-v5-0014 doi: 10.0000/issn-2220-721x-compuecol-2015-v5-0014 |
[26] | S. Işık, A study of stability and bifurcation analysis in discrete-time predator–prey system involving the Allee effect, Int. J. Biomath., 12 (2019), 1950011. https://doi.org/10.1142/S1793524519500116 doi: 10.1142/S1793524519500116 |
[27] | M. S. Shabbir, Q. Din, R. Alabdan, A. Tassaddiq, K. Ahmad, Dynamical complexity in a class of novel discrete-time predator–prey interaction with cannibalism, IEEE Access, 8 (2020), 100226–100240. https://doi.org/10.1109/ACCESS.2020.2995679 doi: 10.1109/ACCESS.2020.2995679 |
[28] | M. S. Shabbir, Q. Din, K. Ahmad, A. Tassaddiq, A. H. Soori, M. A. Khan, Stability, bifurcation, and chaos control of a novel discrete-time model involving Allee effect and cannibalism, Adv. Differ. Equations, 379 (2020), 1–28. https://doi.org/10.1186/s13662-020-02838-z doi: 10.1186/s13662-020-02838-z |
[29] | Q. Din, Complexity and chaos control in a discrete-time prey-predator model, Commun. Nonlinear Sci. Numer Simul., 49 (2017), 113–134. https://doi.org/10.1016/j.cnsns.2017.01.025 doi: 10.1016/j.cnsns.2017.01.025 |
[30] | Z. Hu, Z. Teng, L. Zhang, Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Anal. Real, 12 (2011), 2356–2377. https://doi.org/10.1016/j.nonrwa.2011.02.009 doi: 10.1016/j.nonrwa.2011.02.009 |
[31] | W. Li, X. Li, Neimark-Sacker bifurcation of a semi-discrete hematopoiesis model, J. Appl. Anal. Comput., 8 (2018), 1679–1693. https://doi.org/10.11948/2018.1679 doi: 10.11948/2018.1679 |
[32] | C. Wang, X. Li, Further investigations into the stability and bifurcation of a discrete predator-prey model, J. Math. Anal. Appl., 422 (2015), 920–939. https://doi.org/10.1016/j.jmaa.2014.08.058 doi: 10.1016/j.jmaa.2014.08.058 |
[33] | C. Wang, X. Li, Stability and Neimark-Sacker bifurcation of a semi-discrete population model, J. Appl. Anal. Comput., 4 (2014), 419–435. https://doi.org/10.11948/2014024 doi: 10.11948/2014024 |
[34] | J. Carr, Application to Center Manifold Theory, Spring-Verlag, New York, 1981. https://doi.org/10.1007/978-1-4612-5929-9 |
[35] | S. Winggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2$^nd$ edition, Spring-Verlag, New York, 2003. https://doi.org/10.1007/b97481 |
[36] | Y. A. Kuznestsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Spring-Verlag, New York, 2004. https://doi.org/10.1007/978-1-4757-3978-7nosfx=y |
[37] | W. Yao, X. Li, Bifurcation difference induced by different discrete methods in a discrete predator-prey model, J. Nonlinear Model. Anal., 4 (2022), 64–79. https://doi.org/10.12150/jnma.2022.64 doi: 10.12150/jnma.2022.64 |
[38] | W. Yao, X. Li, Complicate bifurcation behaviors of a discrete predator-prey model with group defense and nonlinear harvesting in prey, Appl. Anal., 2022. https://doi.org/10.1080/00036811.2022.2030724 |
[39] | Z. Pan, X. Li, Stability and Neimark-Sacker bifurcation for a discrete Nicholson's blowflies model with proportional delay, J. Differ. Equations App., 27 (2021), 250–260. https://doi.org/10.1080/10236198.2021.1887159 doi: 10.1080/10236198.2021.1887159 |
[40] | Y. Liu, X. Li, Dynamics of a discrete predator-prey model with Holling-II functional response, Intern. J. Biomath., 14 (2021), 2150068. https://doi.org/10.1142/S1793524521500686 doi: 10.1142/S1793524521500686 |
[41] | M. Ruan, C. Li, X. Li, Codimension two 1:1 strong resonance bifurcation in a discrete predator-prey model with Holling IV functional response, AIMS Math., 7 (2021), 3150–3168. https://doi.org/10.3934/math.2022174 doi: 10.3934/math.2022174 |
[42] | P. A. Naik, Z. Eskandari, Z. Avazzadeh, J. Zu, Multiple Bifurcations of a Discrete-Time Prey-Predator Model with Mixed Functional Response, Int. J. Bifurcat. Chaos, 32 (2022), 2250050. https://doi.org/10.1142/S021812742250050X doi: 10.1142/S021812742250050X |
[43] | P. A. Naik, Z. Eskandari, H. E. Shahraki, Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model, Math. Model. Numer. Simul. Appl., 1 (2021), 95–101. https://doi.org/10.53391/mmnsa.2021.01.009 doi: 10.53391/mmnsa.2021.01.009 |
[44] | P. A. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math., 413 (2022), 114401. https://doi.org/10.1016/j.cam.2022.114401 doi: 10.1016/j.cam.2022.114401 |