This paper discusses some a priori error estimates of bilinear elliptic optimal control problems based on the finite volume element approximation. A case-based numerical example serves to discuss with optimal $ L^2 $-norm error estimates and $ L^{\infty} $-norm error estimates, and supports two key insights. First, the approximate orders for the state, costate and control variables are $ O(h^2) $ in the sense of $ L^{2} $-norm. Second, the approximate orders for the state, costate and control variables are $ O(h^2\sqrt{|lnh|}) $ in the sense of $ L^{\infty} $-norm.
Citation: Zuliang Lu, Xiankui Wu, Fei Cai, Fei Huang, Shang Liu, Yin Yang. Error estimates in $ L^2 $ and $ L^\infty $ norms of finite volume method for the bilinear elliptic optimal control problem[J]. AIMS Mathematics, 2021, 6(8): 8585-8599. doi: 10.3934/math.2021498
This paper discusses some a priori error estimates of bilinear elliptic optimal control problems based on the finite volume element approximation. A case-based numerical example serves to discuss with optimal $ L^2 $-norm error estimates and $ L^{\infty} $-norm error estimates, and supports two key insights. First, the approximate orders for the state, costate and control variables are $ O(h^2) $ in the sense of $ L^{2} $-norm. Second, the approximate orders for the state, costate and control variables are $ O(h^2\sqrt{|lnh|}) $ in the sense of $ L^{\infty} $-norm.
[1] | N. Arada, E. Casas, F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201-229. doi: 10.1023/A:1020576801966 |
[2] | R. E. Bank, D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal., 24 (1987), 777-787. doi: 10.1137/0724050 |
[3] | F. Boyer, F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM J. Numer. Anal., 46 (2008), 3032-3070. doi: 10.1137/060666196 |
[4] | E. Casas, F. Tröltzsch, Second-order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations, Appl. Math. Optim., 39 (1999), 211-227. doi: 10.1007/s002459900104 |
[5] | Y. Danping, Y. Chang, W. Liu, A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type, J. Comput. Math., 26 (2008), 3-19. |
[6] | U. Langer, O. Steinbach, F. Trltzsch, Unstructured space-time finite element methods for optimal control of parabolic equations, SIAM J. Sci. Comput., 43 (2021), 744-771. doi: 10.1137/20M1330452 |
[7] | E. Casas, F. Tröltzsch, A. Unger, Second order sufficient optimality condition for a nonlinear elliptic boundary control problem, Z. Anal. Anwend., 15 (1998), 687-707. |
[8] | H. Guan, D. Shi, An efficient NFEM for optimal control problems governed by a bilinear state equation, Comput. Math. Appl., 77 (2019), 1821-1827. doi: 10.1016/j.camwa.2018.11.017 |
[9] | Z. Cai, On the finite volume element method, Numer. Math., 58 (1991), 713-735. |
[10] | J. Liu, Z. Zhou, Finite element approximation of time fractional optimal control problem with integral state constraint, AIMS Math., 6 (2021), 979-997. doi: 10.3934/math.2021059 |
[11] | P. Chatzipantelidis, A finite volume method based on the Crouzeix-Raviart element for elliptic PDEs in two dimensions, Numer. Math., 82 (1999), 409-432. doi: 10.1007/s002110050425 |
[12] | Y. Chen, Z. Lu, High efficient and accuracy numerical methods for optimal control problems, Science Press, Beijing, 2015. |
[13] | Y. Chen, Z. Lu, Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems, Comput. Methods Appl. Mech. Eng., 199 (2010), 1415-1423. doi: 10.1016/j.cma.2009.11.009 |
[14] | Y. Chen, Z. Lu, Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods, Finite Elem. Anal. Des., 46 (2010), 957-965. doi: 10.1016/j.finel.2010.06.011 |
[15] | Y. Chen, Z. Lu, Y. Huang, Superconvergence of triangular Raviart-Thomas mixed finite element methods for bilinear constrained optimal control problem, Comput. Math. Appl., 66 (2013), 1498-1513. doi: 10.1016/j.camwa.2013.08.019 |
[16] | Y. Chen, N. Yi, W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254-2275. doi: 10.1137/070679703 |
[17] | Z. Chen, R. Li, A. Zhou, A note on the optimal $L^2$ estimate of the finite volume element method, Adv. Comput. Math., 16 (2002), 291-303. doi: 10.1023/A:1014577215948 |
[18] | S. Chou, Q. Li, Error estimates in $L^2$, $H^1$ and $L^\infty$ in covolume methods for elliptic and parabolic problems: A unified approach, Math. Comput., 69 (2000), 103-120. |
[19] | S. Chou, X. Ye, Unified analysis of finite volume methods for second order elliptic problems, SIAM J. Numer. Anal., 45 (2007), 1639-1653. doi: 10.1137/050643994 |
[20] | D. Estep, M. Pernice, P. Du, A posteriori error analysis of a cell-centered finite volume method for semilinear elliptic problems, J. Comput. Appl. Math., 233 (2009), 459-472. doi: 10.1016/j.cam.2009.07.046 |
[21] | R. E. Ewing, T. Lin, Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39 (2002), 1865-1888. doi: 10.1137/S0036142900368873 |
[22] | F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47. doi: 10.1016/0022-247X(73)90022-X |
[23] | T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO: Anal. Numer., 13 (1979), 313-328. doi: 10.1051/m2an/1979130403131 |
[24] | M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45-61. doi: 10.1007/s10589-005-4559-5 |
[25] | J. L. Lions, Optimal control of systems governed by partial differential equtions, Springer, Berlin, 1971. |
[26] | R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), 1321-1349. doi: 10.1137/S0363012901389342 |
[27] | W. Liu, N. Yan, A posteriori error estimates for convex boundary control problems, SIAM J. Numer. Anal., 39 (2001), 73-99. doi: 10.1137/S0036142999352187 |
[28] | W. Liu, N. Yan, A posteriori error estimates for control problems governed by nonlinear elliptic equations, Appl. Numer. Math., 47 (2003), 173-187. doi: 10.1016/S0168-9274(03)00054-0 |
[29] | W. Liu, N. Yan, Adaptive finite element methods for optimal control governed by PDEs, Science Press, Beijing, 2008. |
[30] | W. Liu, D. Tiba, Error estimates for the finite element approximation of a class of nonlinear optimal control problems, J. Numer. Func. Optim., 22 (2001), 935-972. |
[31] | Z. Lu, Y. Chen, W. Zheng, A posteriori error estimates of lowest order Raviart-Thomas mixed finite element methods for bilinear optimal control problems, East Asia J. Appl. Math., 2 (2012), 108-125. doi: 10.4208/eajam.130212.300312a |
[32] | Z. Lu, S. Zhang, $L^\infty$-error estimates of rectangular mixed finite element methods for bilinear optimal control problem, Appl. Math. Comput., 300 (2017), 79-94. |
[33] | X. Luo, Y. Chen, Y. Huang, Some error estimates of finite volume element approximation for elliptic optimal control problems, Int. J. Numer. Anal. Mod., 10 (2013), 697-711. |
[34] | S. Phongthanapanich, R. Eymard, A comparative study of characteristic finite element and characteristic finite volume methods for convection-diffusion-reaction problems on triangular grids, Appl. Sci. Eng. Prog., 12 (2019), 235-242. |
[35] | J. M. Sargado, I. Berre, J. M. Nordbotten, A combined finite element-finite volume framework for phase-field fracture, Comput. Methods. Appl. Mech. Eng., 373 (2021), 113474. doi: 10.1016/j.cma.2020.113474 |
[36] | Z. Shi, M. Wang, Finite element methods, Science Press, Beijing, 2010. |