Research article

Error estimates in $ L^2 $ and $ L^\infty $ norms of finite volume method for the bilinear elliptic optimal control problem

  • Received: 16 December 2020 Accepted: 24 May 2021 Published: 07 June 2021
  • MSC : 49J20, 65M08

  • This paper discusses some a priori error estimates of bilinear elliptic optimal control problems based on the finite volume element approximation. A case-based numerical example serves to discuss with optimal $ L^2 $-norm error estimates and $ L^{\infty} $-norm error estimates, and supports two key insights. First, the approximate orders for the state, costate and control variables are $ O(h^2) $ in the sense of $ L^{2} $-norm. Second, the approximate orders for the state, costate and control variables are $ O(h^2\sqrt{|lnh|}) $ in the sense of $ L^{\infty} $-norm.

    Citation: Zuliang Lu, Xiankui Wu, Fei Cai, Fei Huang, Shang Liu, Yin Yang. Error estimates in $ L^2 $ and $ L^\infty $ norms of finite volume method for the bilinear elliptic optimal control problem[J]. AIMS Mathematics, 2021, 6(8): 8585-8599. doi: 10.3934/math.2021498

    Related Papers:

  • This paper discusses some a priori error estimates of bilinear elliptic optimal control problems based on the finite volume element approximation. A case-based numerical example serves to discuss with optimal $ L^2 $-norm error estimates and $ L^{\infty} $-norm error estimates, and supports two key insights. First, the approximate orders for the state, costate and control variables are $ O(h^2) $ in the sense of $ L^{2} $-norm. Second, the approximate orders for the state, costate and control variables are $ O(h^2\sqrt{|lnh|}) $ in the sense of $ L^{\infty} $-norm.



    加载中


    [1] N. Arada, E. Casas, F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201-229. doi: 10.1023/A:1020576801966
    [2] R. E. Bank, D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal., 24 (1987), 777-787. doi: 10.1137/0724050
    [3] F. Boyer, F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM J. Numer. Anal., 46 (2008), 3032-3070. doi: 10.1137/060666196
    [4] E. Casas, F. Tröltzsch, Second-order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations, Appl. Math. Optim., 39 (1999), 211-227. doi: 10.1007/s002459900104
    [5] Y. Danping, Y. Chang, W. Liu, A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type, J. Comput. Math., 26 (2008), 3-19.
    [6] U. Langer, O. Steinbach, F. Trltzsch, Unstructured space-time finite element methods for optimal control of parabolic equations, SIAM J. Sci. Comput., 43 (2021), 744-771. doi: 10.1137/20M1330452
    [7] E. Casas, F. Tröltzsch, A. Unger, Second order sufficient optimality condition for a nonlinear elliptic boundary control problem, Z. Anal. Anwend., 15 (1998), 687-707.
    [8] H. Guan, D. Shi, An efficient NFEM for optimal control problems governed by a bilinear state equation, Comput. Math. Appl., 77 (2019), 1821-1827. doi: 10.1016/j.camwa.2018.11.017
    [9] Z. Cai, On the finite volume element method, Numer. Math., 58 (1991), 713-735.
    [10] J. Liu, Z. Zhou, Finite element approximation of time fractional optimal control problem with integral state constraint, AIMS Math., 6 (2021), 979-997. doi: 10.3934/math.2021059
    [11] P. Chatzipantelidis, A finite volume method based on the Crouzeix-Raviart element for elliptic PDEs in two dimensions, Numer. Math., 82 (1999), 409-432. doi: 10.1007/s002110050425
    [12] Y. Chen, Z. Lu, High efficient and accuracy numerical methods for optimal control problems, Science Press, Beijing, 2015.
    [13] Y. Chen, Z. Lu, Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems, Comput. Methods Appl. Mech. Eng., 199 (2010), 1415-1423. doi: 10.1016/j.cma.2009.11.009
    [14] Y. Chen, Z. Lu, Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods, Finite Elem. Anal. Des., 46 (2010), 957-965. doi: 10.1016/j.finel.2010.06.011
    [15] Y. Chen, Z. Lu, Y. Huang, Superconvergence of triangular Raviart-Thomas mixed finite element methods for bilinear constrained optimal control problem, Comput. Math. Appl., 66 (2013), 1498-1513. doi: 10.1016/j.camwa.2013.08.019
    [16] Y. Chen, N. Yi, W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254-2275. doi: 10.1137/070679703
    [17] Z. Chen, R. Li, A. Zhou, A note on the optimal $L^2$ estimate of the finite volume element method, Adv. Comput. Math., 16 (2002), 291-303. doi: 10.1023/A:1014577215948
    [18] S. Chou, Q. Li, Error estimates in $L^2$, $H^1$ and $L^\infty$ in covolume methods for elliptic and parabolic problems: A unified approach, Math. Comput., 69 (2000), 103-120.
    [19] S. Chou, X. Ye, Unified analysis of finite volume methods for second order elliptic problems, SIAM J. Numer. Anal., 45 (2007), 1639-1653. doi: 10.1137/050643994
    [20] D. Estep, M. Pernice, P. Du, A posteriori error analysis of a cell-centered finite volume method for semilinear elliptic problems, J. Comput. Appl. Math., 233 (2009), 459-472. doi: 10.1016/j.cam.2009.07.046
    [21] R. E. Ewing, T. Lin, Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39 (2002), 1865-1888. doi: 10.1137/S0036142900368873
    [22] F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47. doi: 10.1016/0022-247X(73)90022-X
    [23] T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO: Anal. Numer., 13 (1979), 313-328. doi: 10.1051/m2an/1979130403131
    [24] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45-61. doi: 10.1007/s10589-005-4559-5
    [25] J. L. Lions, Optimal control of systems governed by partial differential equtions, Springer, Berlin, 1971.
    [26] R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), 1321-1349. doi: 10.1137/S0363012901389342
    [27] W. Liu, N. Yan, A posteriori error estimates for convex boundary control problems, SIAM J. Numer. Anal., 39 (2001), 73-99. doi: 10.1137/S0036142999352187
    [28] W. Liu, N. Yan, A posteriori error estimates for control problems governed by nonlinear elliptic equations, Appl. Numer. Math., 47 (2003), 173-187. doi: 10.1016/S0168-9274(03)00054-0
    [29] W. Liu, N. Yan, Adaptive finite element methods for optimal control governed by PDEs, Science Press, Beijing, 2008.
    [30] W. Liu, D. Tiba, Error estimates for the finite element approximation of a class of nonlinear optimal control problems, J. Numer. Func. Optim., 22 (2001), 935-972.
    [31] Z. Lu, Y. Chen, W. Zheng, A posteriori error estimates of lowest order Raviart-Thomas mixed finite element methods for bilinear optimal control problems, East Asia J. Appl. Math., 2 (2012), 108-125. doi: 10.4208/eajam.130212.300312a
    [32] Z. Lu, S. Zhang, $L^\infty$-error estimates of rectangular mixed finite element methods for bilinear optimal control problem, Appl. Math. Comput., 300 (2017), 79-94.
    [33] X. Luo, Y. Chen, Y. Huang, Some error estimates of finite volume element approximation for elliptic optimal control problems, Int. J. Numer. Anal. Mod., 10 (2013), 697-711.
    [34] S. Phongthanapanich, R. Eymard, A comparative study of characteristic finite element and characteristic finite volume methods for convection-diffusion-reaction problems on triangular grids, Appl. Sci. Eng. Prog., 12 (2019), 235-242.
    [35] J. M. Sargado, I. Berre, J. M. Nordbotten, A combined finite element-finite volume framework for phase-field fracture, Comput. Methods. Appl. Mech. Eng., 373 (2021), 113474. doi: 10.1016/j.cma.2020.113474
    [36] Z. Shi, M. Wang, Finite element methods, Science Press, Beijing, 2010.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2411) PDF downloads(91) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog