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1. Introduction

Throughout this paper, we let q = 2m for a positive integer m. An [n, κ, d] linear code C over the
finite field F2 is a κ-dimensional subspace of Fn

2 with minimum distance d. A linear code C is called
projective if its dual code has minimum distance at least 3. For a codeword c ∈ C the Hamming weight
wt(c) is the number of nonzero coordinates in c. Let Ai be the number of codewords with weight i in C
of length n. The sequence (1, A1, . . . , An) is referred as the weight distribution of C. If the number of
nonzero Ai in the sequence (A1, . . . , An) is equal to t, we call C a t-weight code.

The weight distribution contains important information of a code. In classic coding theory, it gives
the minimum distance of the code which determines the error correction capability of the code. In
addition, the weight distribution allows the computation of the error probability of error detection
and error correction with respect to some algorithms [2, 16, 31]. Thus, it is desirable to determine
the weight distributions of linear codes. Moreover, linear codes with a few nonzero weights have
many applications in constant composition codes [10], authentication codes [11] and secret sharing
schemes [38] and some other fields. So it has provoked tremendous interests in determining the weight
distributions of linear codes in literature. Different kinds of linear codes over finite fields and rings have
been investigated explicitly for the past two decades, see [5, 9, 13, 15, 17–19, 24, 27, 29, 30, 34, 35, 39].
In particular, Ding et al. [13] studied the weight distributions of a class of binary linear codes. Heng et
al. dealt with projective binary linear codes from special Boolean functions in their recent work [18].
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Huang et al. [19] constructed primitive binary LCD BCH codes and determined their parameters.
Let q = pm for a prime p. Choose a subset D = {d1, d2, . . . , dn} of F∗q, where F∗q is the multiplicative

group of Fq. Denote by Tr the absolute trace function from Fq to Fp. A linear code of length n is defined
by

CD = {(Tr(bd1),Tr(bd2), . . . ,Tr(bdn)) : b ∈ Fq}. (1.1)

The set D is called the defining set. Ding [12] pointed out that the defining-set construction is a funda-
mental approach and is equivalent to the generator matrix construction of all linear codes. Therefore
it has attracted extensive attention and many families of linear codes were proposed following this
way [1, 13, 14, 21–23, 33, 36, 37], most of which have good parameters. Particularly, Wu et al. [33]
investigated three-weight binary linear codes from generalized Moisio’s exponential sums. We refer
the reader to [25,28] and the references therein for an overall survey on recent results and problems on
constructions of linear codes from cryptographic functions.

In the rest of the paper, we always take p = 2 unless otherwise stated. In [13], a class of three-weight
binary code CD of (1.1) is constructed using the defining set

D = {x ∈ F∗q : Tr(x2h+1) = 0},

where q = 2m and 1 6 h < m/2.
Let α, β ∈ F∗q, and u a positive integer less than m. We consider a special case of the defining-set

construction by defining a class of linear codes

CD = {c(a, b) : a, b ∈ Fq}, (1.2)

where c(a, b) = (Tr(ax + by))(x,y)∈D and

D = {(x, y) ∈ F2
q\{(0, 0)} : Tr(αx2u+1 + βy2u+1) = 0}. (1.3)

The set D is also called the defining set of CD. Clearly, this is an extension of the work in [13]. The
purpose of this paper is to study the weight distributions of CD by employing Weil sums. These linear
codes are projective with at most three nonzero weights and can be utilized to construct secret sharing
schemes with good access structures.

Now we present the main results of this paper and their proofs are given in Section 3. Let v =

gcd(m, u) stand for the greatest common divisor of m and u. Let g be a generator of the cyclic group
F∗q. Namely, F∗q = 〈g〉. The weight distributions of CD are given in the following four theorems.

Theorem 1.1. Let CD be defined by (1.2) and (1.3). If m/v is odd, then CD is a [22m−1 − 1, 2m, 22m−2 −

2m+v−2] three-weight binary code with the weight distribution in Table 1.

Table 1. The weight distribution of CD in Theorem 1.1.

Weight w Multiplicity Aw

0 1
22m−2 − 2m+v−2 2m−v−1(2m−v + 1)
22m−2 22m − 1 − 22m−2v

22m−2 + 2m+v−2 2m−v−1(2m−v − 1)
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Theorem 1.2. Suppose that m/v is even and α, β < 〈g2v+1〉. Then CD is a [22m−1 + 2m−1 − 1, 2m, 22m−2]
two-weight binary code with the weight distribution in Table 2.

Table 2. The weight distribution of CD in Theorem 1.2.

Weight w Multiplicity Aw

0 1
22m−2 22m−1 + 2m−1 − 1
22m−2 + 2m−1 22m−1 − 2m−1

Theorem 1.3. Let m/v be even and α, β ∈ 〈g2v+1〉. If u , m/2, thenCD is a [22m−1+2m+2v−1−1, 2m, 22m−2]
three-weight binary code with the weight distribution in Table 3. If u = m/2, then CD is a simplex code
with parameters [22m − 1, 2m, 22m−1] and the only nonzero weight 22m−1. Moreover, the simplex code
meets the Griesmer bound.

Table 3. The weight distribution of CD in Theorem 1.3.

Weight w Multiplicity Aw

0 1
22m−2 2m−2v−1(2m−2v + 1) − 1
22m−2 + 2m+2v−2 22m−4v(24v − 1)
22m−2 + 2m+2v−1 2m−2v−1(2m−2v − 1)

Theorem 1.4. Suppose that m/v is even and only one of α and β is in 〈g2v+1〉, then CD is a [22m−1 −

2m+v−1 − 1, 2m, 22m−2 − 2m+v−1] three-weight binary code with the weight distribution in Table 4.

Table 4. The weight distribution of CD in Theorem 1.4.

Weight w Multiplicity Aw

0 1
22m−2 − 2m+v−1 2m−v−1(2m−v + 1)
22m−2 − 2m+v−2 22m − 22m−2v

22m−2 2m−v−1(2m−v − 1) − 1

Some examples are provided to illustrate our main results. All of the numerical results are verified
by Magma programs.

Example 1. Let (m, u) = (3, 1). By Theorem 1.1, the binary code CD has parameters [31, 6, 12]. Its
weight enumerator is 1 + 10z12 + 47z16 + 6z20.
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Example 2. Let (m, u) = (2, 1) and F∗4 = 〈g〉. If we take α = g2 and β = g, from Theorem 1.2 the
binary code CD has parameters [9, 4, 4]. Its weight enumerator is 1 + 9z4 + 6z6. It is optimal according
to Markus Grassl’s code tables available at http://www.codetables.de/.

Example 3. Let (m, u) = (4, 2). Write F∗16 = 〈g〉 and α = β = g5. By Theorem 1.3, the code CD has
parameters [255, 8, 128] and it is an optimal simplex code with the only nonzero weight 128.

Example 4. Let (m, u) = (4, 1), F∗16 = 〈g〉, α = g3 and β = g. By Theorem 1.4, the code CD has
parameters [111, 8, 48]. Its weight enumerator is 1 + 36z48 + 192z56 + 27z64.

2. Preliminaries

In this section, we present some results on group characters and Weil sums. Let G be a finite
abelian group (written multiplicatively). A character χ of G is a homomorphism from G into the
multiplicative group U of complex numbers of absolute value 1. That is, χ is a mapping from G into
U with χ(xy) = χ(x)χ(y) for all x, y ∈ G. Let q = 2m. For each b ∈ Fq, the function

χb(x) = (−1)Tr(bx) for all x ∈ Fq

defines an additive character of Fq, where Tr is the absolute trace function from Fq to F2. The additive
character χ0 is called trivial, whereas other characters χb with b ∈ F∗q are called nontrivial. Especially
χ1 is called the canonical additive character and is denoted by χ for simplicity. See [26] for more
information about characters over finite fields.

In [7], Coulter determined the value of Weil sums S u(α, β) defined by

S u(α, β) =
∑
x∈Fq

χ(αx2u+1 + βx),

for all α, β ∈ Fq, where q = 2m and u is a positive integer. Recall that v = gcd(m, u) is the greatest
common divisor of m and u.

Lemma 2.1 (Theorem 4.1, [7]). If m/v is odd, then

S u(α, 0) =

q if α = 0,
0 otherwise.

Lemma 2.2 (Theorem 4.2, [7]). Let β ∈ F∗q and suppose m/v is odd. Then S u(α, β) = S u(1, βγ−1),
where γ ∈ F∗q is the unique element satisfying γ2u+1 = α. Further, we have

S u(1, β) =

0 if Trv(β) , 1,
±2

m+v
2 if Trv(β) = 1,

where and hereafter Trv is the trace function from Fq to F2v .

Lemma 2.3 (Theorem 5.2, [7]). Let m/v be even so that m = 2k for some integer k. Then

S u(α, 0) =

(−1)k/v2k if α , gt(2v+1) for any integer t,

−(−1)k/v2k+v if α = gt(2v+1) for some integer t,

where g is a generator of F∗q.
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When m/v is even, the evaluation of S u(α, β) for p = 2, where β , 0, was due to Coulter [7], and it
can be similarly proved as the case of an odd prime p, see the poofs of Theorems 1 and 2 in [6].

Lemma 2.4 (Theorem 5.3, [7]). Let β ∈ F∗q and suppose m/v is even such that m = 2k for some integer
k. Let fα(x) = α2u

x22u
+ αx ∈ Fq[x]. There are two cases.

(i) If α , gt(2v+1) for any integer t then fα is a permutation polynomial. Let x0 ∈ Fq be the unique
element satisfying fα(x0) = β2u

. Then

S u(α, β) = (−1)k/v2kχ
(
αx2u+1

0
)
.

(ii) If α = gt(2v+1) for some integer t then S u(α, β) = 0 unless the equation fα(x) = β2u
is solvable. If the

equation is solvable, with solution x0 say, then

S u(α, β) = −(−1)k/v2k+vχ
(
αx2u+1

0
)
.

3. The proofs of the main results

In this section, we always fix α, β ∈ F∗q and let g be a generator of F∗q.

3.1. Auxiliary results

The code length is defined by

n = |D| = |{(x, y) ∈ F2
q\{(0, 0)} : Tr(αx2u+1 + βy2u+1) = 0}|. (3.1)

Lemma 3.1. The code length n of (3.1) is given as follows.
(i) If m/v is odd, then n = 22m−1 − 1.
(ii) If m/v is even, then

n =


22m−1 + 2m−1 − 1 if α, β < 〈g2v+1〉,

22m−1 + 2m+2v−1 − 1 if α, β ∈ 〈g2v+1〉,

22m−1 − 2m+v−1 − 1 otherwise.

Proof. It follows from the orthogonal property of additive characters that

n =
1
2

∑
x,y∈Fq

∑
z1∈F2

(−1)z1 Tr(αx2u+1+βy2u+1) − 1

= 22m−1 +
1
2

∑
x,y∈Fq

(−1)Tr(αx2u+1+βy2u+1) − 1

= 22m−1 − 1 +
1
2

S u(α, 0)S u(β, 0).

Thus we obtain the desired conclusions from Lemmas 2.1 and 2.3. �

The Pless power moments are useful tools when we calculate the weight distribution of a given
code. Recall that the code CD is defined by (1.2) and (1.3) with length n and dimension κ = dimF2(CD).
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The weight distributions of CD and its dual C⊥D are denoted by (1, A1, . . . , An) and (1, A⊥1 , . . . , A
⊥
n ),

respectively. As we will prove later in Theorem 4.1, the minimum weight of the dual code C⊥D is at least
3. So A⊥1 = 0, A⊥2 = 0 and consequently the first three Pless power moments are given by [20, p.260]:

n∑
j=0

A j = 2κ,

n∑
j=0

jA j = 2κ−1n,

n∑
j=0

j2A j = 2κ−2n(n + 1).

3.2. The proofs of Theorems 1.1, 1.2, 1.3 and 1.4

In this subsection, we will prove the weight distributions of CD given in Theorems 1.1, 1.2, 1.3 and
1.4. The code length n is given in Lemma 3.1. Assume that (a, b) , (0, 0) unless otherwise stated. We
define

N0(a, b) = |{(x, y) ∈ F2
q : Tr(αx2u+1 + βy2u+1) = 0, Tr(ax + by) = 0}|. (3.2)

Then the Hamming weight of c(a, b) is expressed as

wt(c(a, b)) = n − N0(a, b) + 1. (3.3)

By (3.2) and the orthogonal property of additive characters,

N0(a, b) = 2−2
∑

x,y∈Fq

∑
z1∈F2

(−1)z1 Tr(αx2u+1+βy2u+1)
∑
z2∈F2

(−1)z2 Tr(ax+by)

= 2−2
∑

x,y∈Fq

(
1 + (−1)Tr(αx2u+1+βy2u+1))(1 + (−1)Tr(ax+by))

= 22m−2 + 2−2(S u(α, 0)S u(β, 0) + S u(α, a)S u(β, b)
)
. (3.4)

Now we are going to determine the values of N0(a, b) given by (3.4). There are four cases to consider
according to the parity of m/v and the values of α and β.

In the first case, if m/v is odd, the length is n = 22m−1 − 1. At first glance, when a = 0 and
b , 0, we have S u(α, 0) = 0 by Lemma 2.1. So N0(a, b) = 22m−2. Similarly when a , 0 and b = 0,
N0(a, b) = 22m−2. Assume that a ∈ F∗q, we have from Lemma 2.2 that

S u(α, a) = S u(1, aγ−1) =

0 if Trv(aγ−1) , 1,
±2

m+v
2 if Trv(aγ−1) = 1,

where γ ∈ F∗q is the unique element satisfying γ2u+1 = α. Thus it follows from (3.4), Lemmas 2.1 and
2.2 that

N0(a, b) ∈ {22m−2, 22m−2 + 2m+v−2, 22m−2 − 2m+v−2}.
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Hence, by (3.3), the weight wt(c(a, b)) of the codeword c(a, b) satisfies

wt(c(a, b)) ∈ {22m−2, 22m−2 + 2m+v−2, 22m−2 − 2m+v−2}.

Put

w1 = 22m−2 − 2m+v−2, w2 = 22m−2, w3 = 22m−2 + 2m+v−2.

We now determine the number Awi of codewords with weight wi in CD. The first three Pless power
moments yield the following system of equations:

Aw1 + Aw2 + Aw3 = 22m − 1,
w1Aw1 + w2Aw2 + w3Aw3 = 22m−1n,

w2
1Aw1 + w2

2Aw2 + w2
3Aw3 = 22m−2n(n + 1),

(3.5)

where n = 22m−1 − 1. Solving the system of equations in (3.5) leads to the weight distribution given in
Table 1. This proves Theorem 1.1.

In the second case, if m/v is even and α, β < 〈g2v+1〉, the length is n = 22m−1 + 2m−1 − 1. It follows
from Lemmas 2.3 and 2.4 that

S u(α, 0) = (−1)k/v2k,

S u(α, a) = (−1)k/v2kχ
(
αx2u+1

0
)
,

where a , 0 and x0 satisfies fα(x0) = a2u
. By (3.4),

N0(a, b) ∈ {22m−2, 22m−2 + 2m−1}.

From (3.3), the weight wt(c(a, b)) belongs to the set

{22m−2, 22m−2 + 2m−1}.

Let

w1 = 22m−2, w2 = 22m−2 + 2m−1.

Again by solving the system of equationsAw1 + Aw2 = 22m − 1,
w1Aw1 + w2Aw2 = 22m−1n,

(3.6)

where n = 22m−1 + 2m−1 − 1, we get the weight distribution given in Table 2. This finishes the proof of
Theorem 1.2.

In the third case, if m/v is even and α, β ∈ 〈g2v+1〉, the length is n = 22m−1 + 2m+2v−1 − 1. Again from
Lemma 2.3, we have

S u(α, 0) = −(−1)k/v2k+v.

AIMS Mathematics Volume 6, Issue 8, 8600–8610.



8607

Let a , 0. It follows from Lemma 2.4 that S u(α, a) = 0 or if the equation fα(x) = a2u
is solvable with

a solution x0 ∈ Fq, then

S u(α, a) = −(−1)k/v2k+vχ
(
αx2u+1

0
)
.

By (3.3) and (3.4), the weight wt(c(a, b)) belongs to the set

{22m−2, 22m−2 + 2m+2v−2, 22m−2 + 2m+2v−1}.

Write

w1 = 22m−2, w2 = 22m−2 + 2m+2v−2, w3 = 22m−2 + 2m+2v−1.

The first three Pless power moments are given by (3.5), where n = 22m−1 + 2m+2v−1 − 1. Solving these
equations yields the weight distribution given in Table 3. This completes the proof of Theorem 1.3.

The last case is that m/v is even and α ∈ 〈g2v+1〉, β < 〈g2v+1〉 (or β ∈ 〈g2v+1〉, α < 〈g2v+1〉 ). In this
case, n = 22m−1 − 2m+v−1 − 1. After a similar argument as we have done in the previous case, we obtain
from (3.3) and (3.4) that wt(c(a, b)) belongs to the set

{22m−2, 22m−2 − 2m+v−2, 22m−2 − 2m+v−1}.

Set

w1 = 22m−2 − 2m+v−1, w2 = 22m−2 − 2m+v−2, w3 = 22m−2.

From the first three Pless power moments (3.5), we get the weight distribution given in Table 4, com-
pleting the proof of Theorem 1.4.

4. The dual of the code CD

For the dual C⊥D of the code CD, we have the following conclusion.

Theorem 4.1. Let m > 2 and α, β ∈ F∗q. The dual C⊥D of the code CD is a binary code with parameters
[n, n − 2m, d⊥], where n is given in Lemma 3.1 and d⊥ = 3 if m is even and 3 6 d⊥ 6 4 if m is odd.

Proof. The dimension of the code C⊥D is obvious. Since D does not contain the zero element of F2
q, the

minimum distance of C⊥D cannot be one. Similarly, since D is not a multiset, any two elements di and
d j of D must be distinct if i , j. Hence, the minimum distance C⊥D cannot be 2. So we have d⊥ > 3.

When m is even, we assume that (x1, 0), (0, y2) ∈ D. We claim that (x1, y2) is in D. Actually,

Tr(αx2u+1
1 + βy2u+1

2 ) = Tr(αx2u+1
1 ) + Tr(βy2u+1

2 ) = 0.

Therefore, the minimum distance of C⊥D is 3.
When m is odd, n = 22m−1 − 1 by Theorem 1.1. Let D = {di = (d1i, d2i) : i = 1, 2, . . . , n}. Consider

the sums di + d j for i , j. The total number of such sums is equal to (22m−1 − 1)(22m−2 − 1) > 22m for
m > 2. Hence, there must be four distinct integers i, j, k, l ∈ {1, 2, . . . , n} such that di + d j = dk + dl.
This means that C⊥D has a codeword with Hamming weight 4. So we have 3 6 d⊥ 6 4, completing the
whole proof. �
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When m is odd, the code C⊥D is at least almost optimal. This is because the minimum weight of any
binary code with length 22m−1 − 1 and dimension 22m−1 − 1 − 2m is at most 4 according to the sphere
packing bound.

Example 5. Let (m, u) = (2, 1), α = g2 and β = g, where F∗4 = 〈g〉. Magma programs show that the
binary code C⊥D has parameters [9, 5, 3] and it is optimal. If we take α = β = g3, then C⊥D has parameters
[15, 11, 3] and it is optimal, too.

Example 6. Let (m, u) = (3, 1). Then the binary code C⊥D has parameters [31, 25, 3] and it is almost
optimal, while the optimal binary code has parameters [31, 25, 4].

5. Conclusions

In this paper, a class of projective binary codes with two or three weights were constructed from a
proper defining set. Their weight distributions were determined by applying Weil sums and the first
three Pless power moments. Furthermore, we determined the parameters of their dual codes. Some
optimal and almost optimal codes were also constructed. Due to [38], a linear code over F2 is suitable
to construct secret sharing schemes with interesting access structures if

wmin

wmax
>

1
2
, (5.1)

where wmin and wmax denote the minimum and maximum nonzero weights of the code, respectively.
For the linear codes CD in Theorems 1.1–1.4, the inequality (5.1) always holds if m > 2v + 2. So they
can be used in secret sharing schemes with good access structures. Additionally, projective two-weight
codes in Theorem 1.2 can be applied in strongly regular graphs [4,8] and projective three-weight codes
in Theorems 1.1, 1.3 and 1.4 are related to association schemes with three classes [3].
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