
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 29333–29345.
DOI: 10.3934/math.20241421
Received: 09 August 2024
Revised: 16 September 2024
Accepted: 29 September 2024
Published: 16 October 2024

Research article

The binary codes generated from quadrics in projective spaces

Lijun Ma, Shuxia Liu and Zihong Tian∗

School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China

* Correspondence: Email: tianzh68@163.com.

Abstract: Quadrics are important in finite geometry and can be used to construct binary codes. In
this paper, we first define an incidence matrix M based on points and non-degenerate quadrics in the
classical projective space PG(n − 1, q), where q is a prime power. As a consequence, we establish a
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their upper bounds.
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1. Introduction

The linear codes arising from combinatorial structures of finite geometry have attracted much
attention in recent years. Lavrauw, Storme, and Voorde [15, 16] studied the linear codes generated by
the incidence matrices of points versus hyperplanes and points versus k-spaces. Leung and Xiang [18]
discussed the dimensions of linear codes from unitals. Bonini and Borello [3], Bonini, Lia, and
Timpanell [6], and Wu et al. [29] investigated minimal linear codes constructed from blocking sets,
Hermitian varieties, and partial spreads, respectively. Some other combinatorial objects in finite
geometry have also been used to construct linear codes; refer to [5, 8, 11, 21, 23, 24].

Quadrics are important in finite geometry and can be used to construct binary linear codes.
Abdukhalikov and Ho [1] discussed the linear codes from quadrics. They constructed some families
of linear complementary dual cyclic codes by using characterizations of elliptic quadrics described in
polar coordinates. Several classes of p-ary linear codes with two or three weights were constructed
from quadratic Bent functions over the finite field Fp by Zhou et al. [31], where p is an odd prime. Xie,
Ouyang, and Mao [30] constructed two classes of linear codes with few weights from the quadratic
forms and completely determined the weight distributions of these codes.

In PG(2, q), a non-degenerate quadric is also called a conic. Droms and Mellinger [9] studied some
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low-density parity-check binary codes arising from the incidence matrices based on the various classes
of points and lines created by a given conic, calculated the dimensions and the minimum distances of
the codes, and gave four conjectures of the dimensions with the help of computer software MAGMA.
Then the aforementioned dimension conjectures were confirmed in [19], [25], and [28]. More binary
codes related to conics refer to [2, 14, 20, 27].

In this paper, we will continue to study the binary linear codes arising from quadrics in projective
spaces. Throughout this paper, we always assume that q is an odd prime power and n is odd. In
Section 2, we introduce the basic theory of quadrics, linear codes, and projective spaces over finite
fields, which will be needed in subsequent sections. In Section 3, we first define an incidence matrix
M of all points and all non-degenerate quadrics in PG(n−1, q) and establish a binary linear code C(M)
with the generator matrix M and its dual code C⊥(M). We determine that the dimension of the code
C(M) is θn−1 with θn =

qn−1
q−1 . In Section 4, we particularly discuss the minimum distances d(C(M)) and

d(C⊥(M)) in PG(2, q), and give their upper bounds, i.e., d(C(M)) ≤ q2(q2−1) and d(C⊥(M)) ≤ 2(q−1).

2. Preliminaries

In this section, we recall some basic theory of quadrics, linear codes, and projective spaces over
finite fields. For a set A, define A∗ = A\{0}.

2.1. Quadrics over finite fields

Let Fq be a finite field with q elements and Fn
q be an n-dimensional vector space over Fq.

Definition 2.1. A quadratic form on Fn
q is a map ϕ : Fn

q → F
n
q satisfying:

(1) ϕ(ax) = a2ϕ(x) for all x ∈ Fn
q and a ∈ Fq; (2) Bϕ : Fn

q × F
n
q → Fq defined by

Bϕ(x, y) = ϕ(x + y) − ϕ(x) − ϕ(y)

is a bilinear form.

The bilinear form Bϕ is called the polar form of ϕ. Notice that Bϕ is symmetric. A quadratic
form is called degenerate if there exists some x ∈ Fn

q
∗ such that ϕ(x) = 0 and Bϕ(x, y) = 0 for any

y ∈ Fn
q, where Fn

q
∗ is the set of all non-zero vectors in Fn

q. Otherwise, it is called non-degenerate. See
Reference [10, 13] for a more detailed description of quadratic forms.

PG(n − 1, q) is an (n − 1)-dimensional projective space, whose (k − 1)-dimensional subspaces for
1 ≤ k ≤ n are the k-dimensional subspaces of the n-dimensional vector space Fn

q.

Definition 2.2. Suppose ϕ is a quadratic form on Fn
q. A quadric is the set of points in PG(n − 1, q)

satisfying ϕ(x) = 0, where x is a point in PG(n − 1, q).

A quadric is called non-degenerate if the quadratic form is non-degenerate. There are some results
of non-degenerate quadrics as follows:

Lemma 2.3. [13] In PG(n − 1, q), when n is odd,
(1) There are θn−1 points in a non-degenerate quadric;
(2) The number of non-degenerate quadrics is

ρn = q(n2−1)/4
(n−1)/2∏

i=1

(q2i+1 − 1).
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2.2. Linear codes

An [n, k, d]q-code C is a q-ary linear code with code length n, dimension k, and minimum distance
d. When q = 2, it is a binary linear code, and q can be omitted. For a linear code C, w(c) represents
the Hamming weight of a codeword c ∈ C, and d(C) represents the minimum distance of C. As we
all know, the minimum distance d(C) is the minimum weight of codewords in a q-ary linear code C,
i.e., d(C) = min{w(c) : 0 , c ∈ C}, and it also equals to the minimum number of linearly dependent
column vectors in its parity-check matrix.

The dual code of C is denoted by C⊥. If C⊥ ⊆ C, C is self-orthogonal; if C⊥ = C, C is self-dual. C
and C⊥ have the following relationships.

Lemma 2.4. [12] Suppose C is a q-ary linear code. Then
(1) (C⊥)⊥ = C;
(2) If G is the generator matrix of C, then G is the parity-check matrix of C⊥;

If H is the parity-check matrix of C, then H is the generator matrix of C⊥.

Lemma 2.5. [12] (Singleton Bound) If there exists an [n, k, d]q-code C, then

d ≤ n − k + 1.

For an [n, k, d]q-code C, if d = n − k + 1, then C is called a maximum distance separable code, or
an MDS code for short.

2.3. Descriptions of points and hyperplanes in PG(n − 1, q)

For the need of Section 3, we give a description of PG(n − 1, q). It is well known that Fqn is
isomorphic to Fn

q and could be regarded as an n-dimensional vector space over Fq. So the points and
hyperplanes of PG(n − 1, q) could be represented by the elements of the field Fqn . Please refer to [17]
for details.

For any point of PG(n − 1, q), it could be represented by xFq, x ∈ F∗qn . Let α be a primitive element
of Fqn . Then

F∗qn/F∗q = 〈αF∗q〉 � Zθn ,

where θn =
qn−1
q−1 . Each coset αiF∗q with 0 is a point of PG(n − 1, q), 0 ≤ i ≤ θn − 1. For convenience, let

Pi = αiFq for 0 ≤ i ≤ θn − 1. Then P = {Pi : 0 ≤ i ≤ θn − 1} is the set of points in PG(n − 1, q).
Define a inner product over Fqn as

(x, y) = Trn/1(xy), ∀x, y ∈ Fqn ,

where Trn/1(x) = x + xq + xq2
+ · · · + xqn−1

is the trace function from Fqn to Fq. Obviously, this inner
product is non-degenerate. Let

N = {x ∈ Fqn : Trn/1(x) = 0}.

Then N = { xq − x : x ∈ Fqn}, |N| = qn−1, and N is an (n − 1)-dimensional subspace over Fq of Fqn . For
an arbitrary x ∈ F∗qn , xN is an (n − 1)-dimensional subspace of Fqn and has the orthogonal complement
(xN)⊥ = 〈x−1〉, where 〈x−1〉 is the 1-dimensional subspace generated by x−1. Therefore, xN = yN if
and only if xy−1 ∈ F∗q for any x, y ∈ F∗qn . Thus, the number of these (n − 1)-dimensional subspaces of
Fqn with the form xN is θn.
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Let
Ñ = {Pi = αiFq : αi ∈ N, 0 ≤ i ≤ θn − 1},

then Ñ is the point set of (n − 1)-dimensional subspace N and

α jÑ = {P[i+ j]θn : Pi ∈ Ñ, 0 ≤ i ≤ θn − 1}, 0 ≤ j ≤ θn − 1,

are the all hyperplanes of PG(n− 1, q), where [i + j]θn ≡ i + j(mod θn). We denote α jÑ byH j for short
with 0 ≤ j ≤ θn − 1.

3. Binary linear codes arising from non-degenerate quadrics

In this section, we introduce the incidence matrix M constructed by points and non-degenerate
quadrics in PG(n − 1, q) and construct a binary linear code with the generator matrix M. Furthermore,
we determine the dimension of the binary linear code.

Let Q be the set of all non-degenerate quadrics in PG(n− 1, q). Here, we define an incidence matrix
M = (mi j) of points and non-degenerate quadrics in PG(n − 1, q), the rows are indexed by the points
and the columns are indexed by the non-degenerate quadrics, and with entry

mi j =

{
1 Pi ∈ O j;
0 Pi < O j,

where Pi ∈ P, O j ∈ Q, 0 ≤ i ≤ θn − 1, 0 ≤ j ≤ ρn − 1. Then M is a θn × ρn matrix, where ρn is given in
Lemma 2.3.

Theorem 3.1. For the incidence matrix M defined above, we have
(1) The number of 1′s in each column is c =

qn−1−1
q−1 ;

(2) The number of 1′s in each row is r = q(n2−1)/4(qn−1 − 1)
∏(n−3)/2

i=1 (q2i+1 − 1).

Proof. The number c of 1′s in each column of M is the number of points in a non-degenerate quadric,
that is θn−1 from Lemma 2.3. Since points are transitive under the action of the projective linear
group PGL(n, q), the number r of 1′s in each row of M is the same. So rθn = cρn, we can obtain
r = q(n2−1)/4(qn−1 − 1)

∏(n−3)/2
i=1 (q2i+1 − 1). �

We construct a linear code C(M) spanned from the rows of M over F2, which is a binary code with
the generator matrix M. From Reference [12], the dual code C⊥(M) of C(M) is also a binary linear
code, and the sum of dimensions of C(M) and C⊥(M) is the code length.

3.1. The dimension of C(M)

In this subsection, we determine the dimension of C(M) and give a class of MDS codes. Our results
are obtained by representing non-degenerate quadrics in terms of the trace functions from Fqn to Fq.

Define
Q = {x : Trn/1(xq+1) = 0}

and
Q̃ = {Pi = αiFq : αi ∈ Q, 0 ≤ i ≤ θn − 1}.
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Then Q̃ is a subset of points in PG(n − 1, q).
Further, let

I = {i : Pi ∈ Ñ} = {i : Trn/1(αi) = 0, 0 ≤ i ≤ θn − 1}

and
J = { j : P j ∈ Q̃} = { j : Trn/1(α j(q+1)) = 0, 0 ≤ j ≤ θn − 1}

be the index set of Ñ and Q̃, respectively. Then I is a (θn, θn−1, θn−2)-difference set (see [22] for details).

Lemma 3.2. I = (q + 1)J.

Proof. If i ∈ J, then i(q + 1) ∈ I, so (q + 1)J ⊆ I. Because gcd(q + 1, θn) = 1 when n is odd,
|(q + 1)J| = |J| = |I|. Thus, we have (q + 1)J = I. �

Lemma 3.3. Suppose τ is a map of Fqn to itself such that τ(x) = xq + xqn−1
for any x ∈ Fqn , then τ is an

isomorphic map of Fqn .

Proof. For x ∈ Fqn , if x ∈ ker(τ), then xqn−1
= −xq. We have x2qn−1

= x2q, so there is x2 = (x2)q2
after

both sides of this equation are raised to the q power. Thus x2 ∈ Fq2 . When n is odd, Fq2 ∩ Fqn = Fq,
then x2 ∈ Fq. As q is odd,

xq2
= (x2q)

q−1
2 · xq = ((x2)q)

q−1
2 · xq = (x2)

q−1
2 · xq = x2q−1 = x,

i.e., x ∈ Fq2 . Therefore, x ∈ Fq. Further, for any x ∈ Fq, τ(x) = xq + xqn−1
= 2x, and τ(x) = 0 if and only

if x = 0 when q is odd. Therefore, τ is an isomorphic map of Fqn . �

Theorem 3.4. The point set Q̃ is a non-degenerate quadric in PG(n − 1, q).

Proof. We only need to prove that the map ϕ such that ϕ(x) = Trn/1(xq+1) for any x ∈ Fqn is a non-
degenerate quadratic form.

On the one hand, for any a ∈ Fq and x ∈ Fqn ,

ϕ(ax) = Trn/1(aq+1xq+1) = a2Trn/1(xq+1) = a2ϕ(x).

For any x, y ∈ Fqn , suppose
Bϕ(x, y) = ϕ(x + y) − ϕ(x) − ϕ(y).

Then Bϕ(x, y) = Trn/1((xq + yq)(x + y)− xq+1 − yq+1) = Trn/1(xqy + yqx). It is easy to verify that Bϕ(x, y)
is a bilinear form. So ϕ is a quadratic form.

On the other hand, suppose ϕ is degenerate, then there exists x ∈ F∗qn such that ϕ(x) = 0 and
Bϕ(x, y) = 0 for any y ∈ Fqn . Further,

Bϕ(x, y) = Trn/1(xqy + yqx) = Trn/1(xyqn−1
+ yqx) = Trn/1(x(yq + yqn−1

)).

We know that x(yq + yqn−1
) runs through all the elements of Fqn when y runs through all the elements of

Fqn from Lemma 3.3. So Bϕ(x, y) is not always 0, which contradicts the hypothesis.
Thus, ϕ is a non-degenerate quadratic form, and Q̃ is a non-degenerate quadric. �
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Let α be a primitive element of Fqn . α could define a linear transformation σ from Fqn to itself by
σ(x) = αx for any x ∈ Fqn . Define

Oi = αiQ̃ = {P[i+ j]θn : P j ∈ Q̃, 0 ≤ j ≤ θn − 1}, 0 ≤ i ≤ θn − 1.

Obviously, Oi is also a non-degenerate quadric in PG(n − 1, q). For convenience, we call Oi a linear
non-degenerate quadric in PG(n − 1, q), or l-quadric for short, where 0 ≤ i ≤ θn − 1.

In particular, when n = 2, the set of l-quadrics (or l-conics) is a projective bundle introduced
in [4]. Recently, Bariffi et al. [7] constructed new moderate-density parity-check codes from projective
bundles and studied the relevant parameters.

In the following, we define an incidence matrix M1 = (mi j) of points and l-quadrics in PG(n − 1, q),
the ith row is indexed by Pi, the jth column is indexed by O j, and with entry

mi j =

1 if Pi ∈ O j;
0 if Pi < O j,

where 0 ≤ i, j ≤ θn − 1. Then M1 is a cyclic sub-matrix of M, and the numbers of 1′s in each column
and each row are both θn−1. Denote the binary code generated by the rows of M1 by C(M1).

Lemma 3.5. |Oi ∩ O j| = |Hi ∩H j| = θn−2 with 0 ≤ i, j ≤ θn − 1, i , j.

Proof. Obviously, the index sets of Oi andHi are i + I and i + J, respectively, 0 ≤ i ≤ θn − 1 . So

|Oi ∩ O j| = |(i + I) ∩ ( j + I)|, |Hi ∩H j| = |(i + J) ∩ ( j + J)|,

where i + I = {i + t : t ∈ I}. From Lemma 3.2,

|Oi ∩ O j| = |(i + (q + 1)J) ∩ ( j + (q + 1)J)| = |(i + J) ∩ ( j + J)|.

That is |Oi ∩ O j| = |Hi ∩ H j|. BecauseHi is a hyperplane of PG(n − 1, q) for 0 ≤ i ≤ θn − 1, Hi ∩ H j

is an (n − 3)-dimensional subspace of PG(n − 1, q) for i , j. Then |Oi ∩ O j| = |Hi ∩H j| = θn−2. �

Theorem 3.6. C(M1) is an MDS code with parameters [θn, θn − 1, 2].

Proof. Obviously, the length of C(M1) is θn, and the dimension of C(M1) is the 2-rank of M1. From
Theorem 3.1 and Lemma 3.5, due to θn−1 ≡ 0(mod 2) and θn−2 ≡ 1(mod 2) when n is odd, we have

MT
1 M1 =


0 1 . . . 1
1 0 . . . 1
...

...
...

1 1 . . . 0

 ,
which is an alternating matrix and rank2(MT

1 M1) = θn−1. Then rank2(M1) ≥ θn−1. On the other hand,
the sum of all the row vectors of M1 is the zero vector, then rank2(M1) ≤ θn−1. Thus rank2(M1) = θn−1,
that is the dimension of C(M1).

From the Singleton bound in Lemma 2.5, the minimum distance d(C(M1)) ≤ 2. Because the weight
of the sum of any two codewords with even weights is also even, then the weights of codewords in
C(M1) are always even. So d(C(M1)) = 2. Thus C(M1) is a [θn, θn − 1, 2]-code, and it is an MDS
code. �
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Theorem 3.7. The dimension of C(M) is θn − 1.

Proof. The dimension of C(M) is the 2-rank of M. M1 is a sub-matrix of M, so rank2(M) ≥
rank2(M1) ≥ θn − 1. On the other hand, the sum of all the row vectors of M is also the zero vector, so
rank2(M) ≤ θn − 1. Thus rank2(M) = θn − 1. �

From the relationship between the dimension of C and the dimension of C⊥, we have the following
result.

Corollary 3.8. The dimension of C⊥(M) is ρn − θn + 1.

3.2. The minimum distance of C(M)

In this subsection, we give a range of the minimum distance of C(M) by analyzing the structure of
M. Let group G be 〈αF∗q〉. For any non-degenerate quadric O, denote its orbit by O under the action of
G.

Theorem 3.9. For any non-degenerate quadric O,
∣∣∣O∣∣∣ = θn.

Proof. Suppose G0 is the stabilizer of O and |G0| = s, then
∣∣∣O∣∣∣ = |G|/|G0| = θn/s. Because the number

of 1′s in each column is θn−1, then s|θn−1. Thus s| gcd(θn−1, θn). Due to

gcd(θn−1, θn) = gcd(θn−1, θn − θn−1) = gcd(θn−1, qn−1) = 1,

we have s = 1 and
∣∣∣O∣∣∣ = θn. �

From Theorem 3.9, we know that the matrix M can be divided into ρn/θn = q(n2−1)/4(q −
1)

∏(n−3)/2
i=1 (q2i+1 − 1) cyclic matrices, then C(M) has a natural quasi-cyclic structure.

Theorem 3.10. 2ρn/θn ≤ d(C(M)) ≤ θn−1ρn/θn.

Proof. For any cyclic sub-matrix M′ of M, it is not difficult to see that the minimum distance of the
binary code generated by the rows of M′ is at least 2, then d(C(M)) ≥ 2ρn/θn. Take a row of M;
the weight of the corresponding codeword of C(M) is θn−1ρn/θn from Theorem 3.1, so d(C(M)) ≤
θn−1ρn/θn. �

4. Binary linear codes arising from conics in PG(2, q)

A non-degenerate quadric is a conic in PG(2, q). The matrix M defined in Section 3 is an incidence
matrix of points and conics, and M is a (q2 + q + 1) × q2(q3 − 1) matrix. In this section, we continue to
study the binary codes from the matrix M and give smaller upper bounds of the minimum distances of
C(M) and C⊥(M) in PG(2, q).

For convenience, we use vectors to represent points in PG(2, q). When q is an odd prime power, the
equation of a conic in PG(2, q) can be represented by

XAXT = 0,

where X = (x, y, z) is a point, A ∈ F3×3
q , A = AT and |A| , 0. So, we could represent a conic with the

corresponding non-degenerate symmetric matrix. From Chapter 2 of [26], the equation of a conic can
be carried by a projective transformation into the normal form x2 + yz = 0 in PG(2, q).
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Theorem 4.1. For the incidence matrix M defined above, we have
(1) The number of 1′s in each column is c = q + 1;
(2) The number of 1′s in each row is r = q2(q2 − 1);
(3) The number of 1′s in the same entries of any two rows is λ = q2(q − 1).

Proof. From Theorem 3.1, we have (1) and (2). For (3), because any two different points could
determine a unique line in PG(2, q) and PGL3(Fq) is transitive on the set of lines in PG(2, q), we
can take two points P1 = (1, 0, 0) and P2 = (0, 1, 0). Let O2 be a conic containing both points, and its
corresponding symmetric matrix be

A =


a d e
d b f
e f c

 .
From P1, P2 ∈ O2, we have a = 0 and b = 0, and the number of non-degenerate symmetric matrices
satisfying these two conditions is q2(q− 1)2. So, there are q2(q− 1) conics containing any two different
points, that is, the number of 1′s in the same entries of any two rows. �

Theorem 4.2. C⊥(M) is a self-orthogonal code.

Proof. By Lemma 2.4 (1), C⊥(M) is a self-orthogonal code if and only if C(M) ⊆ C⊥(M). Take a
codeword v ∈ C(M), for any codeword c ∈ C(M) (v=c is possible), the number of 1′s appearing in
the same position of v and c is always even by Theorem 4.1. So (v, c) = 0, i.e., v ∈ C⊥(M). Thus
C(M) ⊆ C⊥(M), and C⊥(M) is a self-orthogonal code. �

From Theorem 3.7, we can obtain the dimension of C(M) is q2 + q. Hamming weights and parity-
check matrices are usually applied to study the minimum distances of linear codes. Here, we use them
to consider the minimum distances of C(M) and C⊥(M).

For the rows of M corresponding to any m (≤ q + 1) collinear points, any two rows have q2(q − 1)
1′s in the same entries, and any three rows have no 1 in the same entry by the properties of conics.

Lemma 4.3. The weight of the sum of the codewords from row vectors of M corresponding to any
m (≤ q + 1) collinear points is mq2(q − 1)(q − m + 2). Furthermore, there is

q2(q2 − 1) ≤ mq2(q − 1)(q − m + 2) ≤
1
4

q2(q2 − 1)(q + 3).

Proof. Because there is no conic containing any three collinear points, the weight of the sum of the
codewords corresponding to these m collinear points is mr − m(m − 1)λ = mq2(q − 1)(q − m + 2).
This is a quadratic polynomial on the variate m; its lower bound is q2(q2 − 1) and its upper bound is
1
4q2(q2 − 1)(q + 3) with m =

q+1
2 . �

Lemma 4.4. There exist some codewords of C(M) with weights

(3q2 + 4)(q − 1)2, 4q4 − 12q3 + 24q2 − 40q + 32, 4(q − 1)(q3 − 2q2 + 3q − 3).

Proof. The codewords of C(M) are the linear combinations of the row vectors of M. We discuss the
weights of the codewords in Theorem 4.1. Consider any m row vectors of M corresponding to m
collinear points; the weights are given in Lemma 4.3.
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Consider any three row vectors of M corresponding to non-collinear points; let C1 be the set of
conics containing these three points. By a calculation similar to Theorem 4.1, we have |C1| = (q − 1)2,
then there exists a codeword with weight 3(r − 2λ) + 4|C1| = (3q2 + 4)(q − 1)2.

Consider any four row vectors of M corresponding to non-collinear points. If any three of them
are non-collinear, the number of conics containing these four points is q − 2. Applying the Exclusion
Principle, there exists a codeword with weight 4r−12λ+16|C1|−8(q−2) = 4q4−12q3+24q2−40q+32. If
there are exactly three of them collinear, there is no conic containing these four points, and there exists
a codeword with weight 4r − 12λ + 12|C1| = 4(q − 1)(q3 − 2q2 + 3q − 3). �

Theorem 4.5. d(C(M)) ≤ q2(q2 − 1).

Proof. From Lemma 4.3, when m = 1, there is d(C(M)) ≤ q2(q2 − 1). �

Using the software package MAGMA, we have known that the minimum distances of C(M)
are 72, 600 for q = 3, 5, respectively. Therefore, we think that the bound of d(C(M)) is maybe tight.

To calculate the minimum distance of C⊥(M), let us first list all the points in PG(2, q). Suppose that
β is a primitive element of Fq. Let

S 1 = {(1, βi, βi+ j) : 0 ≤ i, j ≤ q − 2};

S 2 = {(1, β j, 0), (1, 0, β j), (0, 1, β j) : 0 ≤ j ≤ q − 2},

then the set of points in PG(2, q) is S 1∪S 2∪{e1, e2, e3}, where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).
For any point P in PG(2, q), which is different from e1, e2, e3, then any three distinct points in the set
{P, e1, e2, e3} are not collinear if and only if P ∈ S 1.

Theorem 4.6. d(C⊥(M)) ≤ 2(q − 1).

Proof. We first separate the points of S 2 into three parts and choose the conics as follows:

R12 = {(1, β j, 0) : 0 ≤ j ≤ q − 2};

R13 = {(1, 0, β j) : 0 ≤ j ≤ q − 2};

R23 = {(0, 1, β j) : 0 ≤ j ≤ q − 2},

and
Q12 = {x2 − βz2 − β−uxy = 0 : 0 ≤ u ≤ q − 2};

Q′12 = {y2 − βz2 − βuxy = 0 : 0 ≤ u ≤ q − 2}.

Then R12 ∪ R13 ∪ R23 = S 2. By calculation, we find that the points in the conic x2 − βz2 − β−uxy = 0
(∈ Q12) are

e2, (1, βu, 0), (1, βu(1 − β2 j+1), β j), 0 ≤ j ≤ q − 2.

Because q is odd, (q − 1) - (2 j + 1). Then the points (1, βu(1 − β2 j+1), β j), 0 ≤ j ≤ q − 2, are in
S 1. Similarly, the conic y2 − βz2 − βuxy = 0 (∈ Q′12) consists of e1, (1, βu, 0) and q − 1 points in S 1.
For convenience, we denote the sub-matrices of M with rows indexed by the points of S 1 and columns
indexed by the conics of Q12 and Q′12 by Q1 and Q′1, respectively. We take a sub-matrix M′ of M, whose
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rows are indexed by S 1,R12,R13,R23, e1, e2, e3 and columns are indexed by Q12,Q
′
12. In particular, the

points in R12 are arranged in the order:

(1, 1, 0), (1, β, 0), . . . , (1, βq−2, 0),

and the conics are arranged in the order:

f0, f1, . . . , fq−2; g0, g1, . . . , gq−2,

where fu is the conic x2 − βz2 − β−uxy = 0, gu is y2 − βz2 − βuxy = 0, 0 ≤ u ≤ q − 2. Then

M′ =



Q12 Q′12

S 1 Q1 Q′1
R12 Eq−1 Eq−1

R13 0 0
R23 0 0
e1 0 J
e2 J 0
e3 0 0


,

where Eq−1 is the identity matrix, and J is the matrix with every entry equal to 1.
For the minimum distance of C⊥(M), we consider the columns of M corresponding to the sub-

matrices Q1 and Q′1. For Q1, a point (1, βi, βi+ j) is contained in a conic x2 − βz2 − β−uxy = 0 of Q12

if and only if βu(1 − β2i+2 j+1) − βi = 0, where 0 ≤ i, j, u ≤ q − 2. Notice that q − 1 is even, then
(q− 1) - (2i + 2 j + 1), and u is uniquely determined by the point (1, βi, βi+ j). The number of 1′s in each
row of Q1 is 1. Similar to Q1, the number of 1′s in each row of Q′1 is also 1. Therefore, the columns of
M corresponding to Q1 and Q′1 are linearly dependent. By Lemma 2.4 (2), d(C⊥(M)) ≤ 2(q − 1). �

5. Conclusions

In recent years, some combinatorial objects in finite geometry have been used to construct linear
codes, such as hyperplanes, quadrics, conics, unitals, and so on. These linear codes have very good
structure and properties. In particular, some parameters of these linear codes, including dimensions,
minimum distances, weights, etc., are studied emphatically. In this paper, we first define an incidence
matrix M arising from points and non-degenerate quadrics in PG(n − 1, q) when q is an odd prime
power and n is odd. As a consequence, we establish a new binary linear code C(M) with the generator
matrix M, and completely determine the dimension of C(M). Furthermore, we study the minimum
distances of C(M) and C⊥(M) in PG(2, q), and give their upper bounds. Some linear codes arising
from quadrics or conics in finite geometry are summarized in Table 1.

To conclude, we list here some of the possible developments of our results.
1) For the minimum distances of C(M) and C⊥(M) in PG(2, q), the exact values need further proofs.
2) It is an interesting problem to determine the parameters of C(M) and C⊥(M) when q is an even

prime power or n is even.
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Table 1. Some linear codes arising from quadrics or conics in finite geometry.

Code length Dimension Minimum distance d Reference Geometric objects

q2 + 1 4 q2 − q [1] Elliptic quadric

qn

2|r : min{qn − qn−1 − εQq
2n−r−2

2 (q − 1),

[30] Quadrics
n + 2 qn − qn−1 + εQq

2n−r−2
2 },εQ = 1 or −1;

r ≥ 3 is odd: qn − qn−1 − q
2n−r−1

2 . (∗)
qn − 1 n + 1 The same as (∗)
q2+q

2
q2−q

2 3

[9]

Conics

q2 q2+q
2

q+1
2 ≤ d ≤ q − 1

q2 + q + 1 q2+q+2
2

q+1
2 ≤ d ≤ q + 1

q2 q2−q
2

q+1
2 ≤ d ≤ q + 1, q , 3t

q2−q
2

(q−1)2

4
q+3

2 ≤ d ≤ q − 1 [9,19]

q2+q
2

q ≡ 1(mod 4): q2−2q+5
4

q+1
2 ≤ d ≤ q + 1,

[9,25]
q ≡ 3(mod 4): q2−2q−3

4 q , 3t, 3 is non-square

q2+q
2

q ≡ 1(mod 4): q2−1
4 q+1

2 ≤ d ≤ q − 1
[9,28]

q ≡ 3(mod 4): q2+3
4

q2−q
2

q ≡ 1(mod 4): q2−4q−1
4

q+3
2 ≤ d ≤ q + 1,

q ≡ 3(mod 4): q2−4q+3
4 q , 3t, 3 is square

q2−q
2

q ≡ 1(mod 4): q2−1
4 \ [27]

q ≡ 3(mod 4): q2+3
4

ρn = θn − 1 =
2ρn/θn ≤ d ≤ θn−1ρn/θn Our paper Quadrics

q
n2−1

4
∏ n−1

2
i=1 (q2i+1 − 1) qn−1

q−1 − 1
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