Research article

The $ q $-WZ pairs and divisibility properties of certain polynomials

  • Received: 07 October 2021 Revised: 05 December 2021 Accepted: 06 December 2021 Published: 15 December 2021
  • MSC : 11B65, 05A10, 05A30

  • Using the $ q $-WZ (Wilf-Zeilberger) pairs we give divisibility properties of certain polynomials. These results may deemed generalizations of some $ q $-congruences obtained by Guo earlier, or $ q $-analogues of some congruences of Sun. For example, we prove that, for $ n\geqslant 1 $ and $ 0\leqslant j\leqslant n $, the following two polynomials

    $ \begin{align*} &\sum\limits_{k = j}^{n} (-1)^{k}[3k-2j+1]{2k-2j\brack k}\frac{(q;q^2)_k(q;q^2)_{k-j}(-q;q)_n^3}{(q;q)_k(q^2;q^2)_{k-j}},\\ &\sum\limits_{k = j}^{n} (-1)^{n-k}q^{(k-j)^2}[4k+1]\frac{(q;q^2)_k^2(q;q^2)_{k+j}(-q;q)_n^6 }{(q^2;q^2)_k^2(q^2;q^2)_{k-j}(q;q^2)_j^2}. \end{align*} $

    are divisible by $ (1+q^n)^2[2n+1]{2n\brack n} $. Here $ [m] = 1+q+\cdots+q^{m-1}, (a; q)_m = (1-a)(1-aq)\cdots (1-aq^{m-1}) $, and $ {m\brack k} = (q^{m-k+1};q)_k/(q; q)_k $.

    Citation: Su-Dan Wang. The $ q $-WZ pairs and divisibility properties of certain polynomials[J]. AIMS Mathematics, 2022, 7(3): 4115-4124. doi: 10.3934/math.2022227

    Related Papers:

  • Using the $ q $-WZ (Wilf-Zeilberger) pairs we give divisibility properties of certain polynomials. These results may deemed generalizations of some $ q $-congruences obtained by Guo earlier, or $ q $-analogues of some congruences of Sun. For example, we prove that, for $ n\geqslant 1 $ and $ 0\leqslant j\leqslant n $, the following two polynomials

    $ \begin{align*} &\sum\limits_{k = j}^{n} (-1)^{k}[3k-2j+1]{2k-2j\brack k}\frac{(q;q^2)_k(q;q^2)_{k-j}(-q;q)_n^3}{(q;q)_k(q^2;q^2)_{k-j}},\\ &\sum\limits_{k = j}^{n} (-1)^{n-k}q^{(k-j)^2}[4k+1]\frac{(q;q^2)_k^2(q;q^2)_{k+j}(-q;q)_n^6 }{(q^2;q^2)_k^2(q^2;q^2)_{k-j}(q;q^2)_j^2}. \end{align*} $

    are divisible by $ (1+q^n)^2[2n+1]{2n\brack n} $. Here $ [m] = 1+q+\cdots+q^{m-1}, (a; q)_m = (1-a)(1-aq)\cdots (1-aq^{m-1}) $, and $ {m\brack k} = (q^{m-k+1};q)_k/(q; q)_k $.



    加载中


    [1] S. Chen, How to generate all possible rational Wilf–Zeilberger pairs? Algorithms Complexity Math. Epistemology Sci., 82 (2019), 17–34. https://doi.org/10.1007/978-1-4939-9051-1_2 doi: 10.1007/978-1-4939-9051-1_2
    [2] J. Guillera, WZ pairs and $q$-analogues of Ramanujan series for $1/\pi$, J. Differ. Equ. Appl., 24 (2018), 1871–1879. https://doi.org/10.1080/10236198.2018.1551380 doi: 10.1080/10236198.2018.1551380
    [3] V. J. W. Guo, A $q$-analogue of a Ramanujan-type supercongruence involving central binomial coefficients, J. Math. Anal. Appl., 458 (2018), 590–600. https://doi.org/10.1016/j.jmaa.2017.09.022 doi: 10.1016/j.jmaa.2017.09.022
    [4] V. J. W. Guo, A $q$-analogue of the (L.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 466 (2018), 749–761. https://doi.org/10.1016/j.jmaa.2018.06.023 doi: 10.1016/j.jmaa.2018.06.023
    [5] V. J. W. Guo, A $q$-analogue of the (J.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 466 (2018), 776–788. https://doi.org/10.1016/j.jmaa.2018.06.021 doi: 10.1016/j.jmaa.2018.06.021
    [6] V. J. W. Guo, $q$-Analogues of two "divergent" Ramanujan-type supercongruences, Ramanujan J., 52 (2020), 605–624. https://doi.org/10.1007/s11139-019-00161-0 doi: 10.1007/s11139-019-00161-0
    [7] V. J. W. Guo, $q$-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping, Adv. Appl. Math., 20 (2020), 102078. https://doi.org/10.1016/j.aam.2020.102078 doi: 10.1016/j.aam.2020.102078
    [8] V. J. W. Guo, Some variations of a "divergent" Ramanujan-type $q$-supercongruence, J. Differ. Equ. Appl., 27 (2021), 376–388. https://doi.org/10.1080/10236198.2021.1900140 doi: 10.1080/10236198.2021.1900140
    [9] V. J. W. Guo, J. C. Liu, $q$-Analogues of two Ramanujan-type formulas for $1/\pi$, J. Differ. Equ. Appl., 24 (2018), 1368–1373. https://doi.org/10.1080/10236198.2018.1485669 doi: 10.1080/10236198.2018.1485669
    [10] V. J. W. Guo, M. J. Schlosser, A new family of $q$-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math., 75 (2020), 155. https://doi.org/10.1007/s00025-020-01272-7 doi: 10.1007/s00025-020-01272-7
    [11] V. J. W. Guo, W. Zudilin, A $q$-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. https://doi.org/10.1016/j.aim.2019.02.008 doi: 10.1016/j.aim.2019.02.008
    [12] V. J. W. Guo, S. D. Wang, Some congruences involving fourth powers of central $q$-binomial coefficients, P. Roy. Soc. Edinb. A, 150 (2020), 1127–1138. https://doi.org/10.1017/prm.2018.96 doi: 10.1017/prm.2018.96
    [13] B. He, On the divisibility properties of certain binomial sums, J. Number Theory, 147 (2015), 133–140. https://doi.org/10.1016/j.jnt.2014.07.008 doi: 10.1016/j.jnt.2014.07.008
    [14] B. He, On the divisibility properties concerning sums of binomial coefficients, Ramanujan J., 43 (2017), 313–326. https://doi.org/10.1007/s11139-016-9780-6 doi: 10.1007/s11139-016-9780-6
    [15] L. Li, S. D. Wang, Proof of a $q$-supercongruence conjectured by Guo and Schlosser, RACSAM Rev. R. Acad. A, 114 (2020), 190. https://doi.org/10.1007/s13398-020-00923-2 doi: 10.1007/s13398-020-00923-2
    [16] J. C. Liu, On a congruence involving $q$-Catalan numbers, C. R. Math., 358 (2020), 211–215. https://doi.org/10.5802/crmath.35 doi: 10.5802/crmath.35
    [17] J. C. Liu, Z. Y. Huang, A truncated identity of Euler and related $q$-congruences, Bull. Aust. Math. Soc., 102 (2020), 353–359. https://doi.org/10.1017/S0004972720000301 doi: 10.1017/S0004972720000301
    [18] J. C. Liu, F. Petrov, Congruences on sums of $q$-binomial coefficients, Adv. Appl. Math., 116 (2020), 102003. https://doi.org/10.1016/j.aam.2020.102003 doi: 10.1016/j.aam.2020.102003
    [19] E. Mortenson, A $p$-adic supercongruence conjecture of van Hamme, P. Am. Math. Soc., 136 (2008), 4321–4328. https://doi.org/10.1090/S0002-9939-08-09389-1 doi: 10.1090/S0002-9939-08-09389-1
    [20] H. X. Ni, H. Pan, Divisibility of some binomial sums, Acta Arith., 194 (2020), 367–381. https://doi.org/10.4064/aa181114-24-7 doi: 10.4064/aa181114-24-7
    [21] B. Y. Sun, Finding more divisibility properties of binomial sums via the WZ method, Ramanujan J., 48 (2019), 173–189. https://doi.org/10.1007/s11139-018-0001-3 doi: 10.1007/s11139-018-0001-3
    [22] Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. https://doi.org/10.1007/s11425-011-4302-x doi: 10.1007/s11425-011-4302-x
    [23] Z. W. Sun, Products and sums divisible by central binomial coefficients, Electron. J. Comb., 20 (2013). https://doi.org/10.37236/3022 doi: 10.37236/3022
    [24] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: $p$-Adic functional analysis (Nijmegen, 1996), Lecture Notes Pure Appl. Math. 192, Dekker, New York, 1997,223–236.
    [25] X. Wang, M. Yu, Some new $q$-congruences on double sums, RACSAM Rev. R. Acad. A, 115 (2021). https://doi.org/10.1007/s13398-020-00946-9 doi: 10.1007/s13398-020-00946-9
    [26] X. Wang, M. Yue, Some $q$-supercongruences from Watson's $_8\phi_7$ transformation formula, Results Math., 75 (2020), 71. https://doi.org/10.1007/s00025-020-01195-3 doi: 10.1007/s00025-020-01195-3
    [27] H. S. Wilf, D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and "$q$") multisum/integral identities, Invent. Math., 108 (1992), 575–633. https://doi.org/10.1007/BF02100618 doi: 10.1007/BF02100618
    [28] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory, 129 (2009), 1848–1857. https://doi.org/10.1016/j.jnt.2009.01.013 doi: 10.1016/j.jnt.2009.01.013
    [29] W. Zudilin, Congruences for $q$-binomial coefficients, Ann. Combin., 23 (2019), 1123–1135. https://doi.org/10.1007/s00026-019-00461-8 doi: 10.1007/s00026-019-00461-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1219) PDF downloads(58) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog