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Abstract: Using the q-WZ (Wilf-Zeilberger) pairs we give divisibility properties of certain
polynomials. These results may deemed generalizations of some q-congruences obtained by Guo
earlier, or q-analogues of some congruences of Sun. For example, we prove that, for n > 1 and
0 6 j 6 n, the following two polynomials

n∑
k= j

(−1)k[3k − 2 j + 1]
[
2k − 2 j

k

]
(q; q2)k(q; q2)k− j(−q; q)3

n

(q; q)k(q2; q2)k− j
,

n∑
k= j

(−1)n−kq(k− j)2
[4k + 1]

(q; q2)2
k(q; q2)k+ j(−q; q)6

n

(q2; q2)2
k(q2; q2)k− j(q; q2)2

j

.

are divisible by (1+qn)2[2n+1]
[

2n
n

]
. Here [m] = 1+q+· · ·+qm−1, (a; q)m = (1−a)(1−aq) · · · (1−aqm−1),

and
[

m
k

]
= (qm−k+1; q)k/(q; q)k.
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1. Introduction

It was conjectured by Van Hamme [24] that, for any odd prime p,

p−1
2∑

k=0

4k + 1
(−64)k

(
2k
k

)3

≡ p(−1)
p−1

2 (mod p3). (1.1)

The congruence (1.1) was first proved by Mortenson [19] using a technical evaluation of a quotient of
Gamma functions, and later reproved by Zudilin [28] via the WZ (Wilf-Zeilberger) method. Using the
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same WZ-pair as Zudilin, Z.-W. Sun [23] proves the following generalization of (1.1): for any positive
integer n,

n∑
k=0

(4k + 1)
(
2k
k

)3

(−64)n−k ≡ 0 mod 4(2n + 1)
(
2n
n

)
. (1.2)

Moreover, Z.-W. Sun [22, Conjecture 5.1(i)] proposed the following conjecture: for n > 1,
n∑

k=0

(3k + 1)
(
2k
k

)3

(−8)n−k ≡ 0 (mod 4(2n + 1)
(
2n
n

)
), (1.3)

n∑
k=0

(6k + 1)
(
2k
k

)3

(−512)n−k ≡ 0 (mod 4(2n + 1)
(
2n
n

)
), (1.4)

n∑
k=0

(6k + 1)
(
2k
k

)3

256n−k ≡ 0 (mod 4(2n + 1)
(
2n
n

)
). (1.5)

The above three congruences were later proved by He [13, 14] using the WZ method again. Recently,
still via the WZ method, Sun [21, Theorem 1.1] gave further generalizations of (1.3)–(1.5), such as:
for n > 1 and 0 6 j 6 n,

n∑
k= j

(6k − 2 j + 1)
(

2k
k

)(
2k+2 j
k+ j

)(
2k−2 j
k− j

)(
k+ j

k

)
(

2 j
j

)
28k−8n−2 j

≡ 0 (mod 4(2n + 1)
(
2n
n

)
). (1.6)

It is easy to see that the j = 0 case of (1.6) reduces to (1.5). The reader is referred to [1] for a collection
of some other interesting applications of the WZ method in recent years.

On the other hand, by finding a q-analogue of the WZ pair in Zudilin’s proof of (1.1), Guo [3] gave
the following q-analogue of (1.2):

n∑
k=0

(−1)kqk2
[4k + 1]

[
2k
k

]3

(−qk+1; q)6
n−k ≡ 0 (mod (1 + qn)2[2n + 1]

[
2n
n

]
). (1.7)

Here and in what follows, the q-shifted factorials are defined by

(a; q)k :=
(a; q)∞

(aqk; q)∞
, where (a; q)∞ =

∞∏
j=0

(1 − aq j),

the q-integers are defined as [n] = [n]q = (1 − qn)/(1 − q), and the q-binomial coefficients are given by[
m
k

]
=

[
m
k

]
q

=


(q; q)m

(q; q)k(q; q)m−k
if 0 6 k 6 m,

0 otherwise.

In his subsequent work [4–6], Guo also gave similar q-analogues of (1.3)–(1.5). For more recent
progress on q-congruences, see [7–11, 15–18, 20, 25, 26, 29].

In this paper, we shall give q-analogues of Sun’s generalizations of (1.3)–(1.5), including a q-
analogue of (1.6). We shall also give a further generalization of (1.7). Our main results can be stated
as follows.
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Theorem 1.1. Let n be a positive integer and 0 6 j 6 n. Then modulo (1 + qn)2[2n + 1]
[

2n
n

]
,

n∑
k= j

(−1)k[3k − 2 j + 1]
[
2k − 2 j

k

]
(q; q2)k(q; q2)k− j(−q; q)3

n

(q; q)k(q2; q2)k− j
≡ 0, (1.8)

n∑
k= j

(−1)k[6k − 2 j + 1]
(q; q2)k+ j(q; q2)2

k− j(−q; q)6
n(−q2; q2)3

n

(q4; q4)2
k(q4; q4)k− j

≡ 0, (1.9)

1 + qn

1 + q2n

n∑
k= j

q(k− j)2
[6k − 2 j + 1]

(q2; q4)k(q; q2)k− j(q; q2)k+ j(−q; q)4
n(−q2; q2)4

n

(q4; q4)2
k(q4; q4)k− j(q2; q4) j

≡ 0. (1.10)

It is easy to see that, when q = 1 the congruence (1.10) reduces to
n∑

k= j

28n−2k(6k − 2 j + 1)(1
2 )k( 1

2 )k− j( 1
2 )k+ j

(1)2
k(1)k− j( 1

2 ) j
≡ 0 (mod 4(2n + 1)

(
2n
n

)
),

where (a)k = a(a + 1) · · · (a + k − 1) for k > 1 and (a)0 = 1. This congruence is exactly an equivalent
form of (1.6). Similarly, the congruences (1.8) and (1.9) in the q = 1 case reduce to the other two
results in [21, Theorem 1.1].

Theorem 1.2. Let n be a positive integer and 0 6 j 6 n. Then
n∑

k= j

(−1)kq(k− j)2
[4k + 1]

(q; q2)2
k(q; q2)k+ j(−q; q)6

n

(q2; q2)2
k(q2; q2)k− j(q; q2)2

j

≡ 0 (mod (1 + qn)2[2n + 1]
[
2n
n

]
). (1.11)

It is clear that the q = 1 case of (1.11) gives

n∑
k= j

(−1)k(4k + 1)
(

2k
k

)2(2k+2 j
k+ j

)(
k+ j
k− j

)
(

2 j
j

)
64k−n

≡ 0 (mod 4(2n + 1)
(
2n
n

)
),

which is a generalization of (1.2), and was neglected by Sun [21].
The rest of the paper is organized as follows. We first establish a general divisibility results based

on the q-WZ machinery in the next section. We shall prove Theorems 1.1 and 1.2 in Sections 3 and 4,
respectively. Finally, we shall propose some open problems in Section 5.

2. The q-WZ pair and an auxillary result

Let A = A(n, k) be a double-indexed sequence with values in a suitable ground-field containing the
rational number field and q. Recall that the sequence A is called q-hypergeometric in both parameters
if both quotients

A(n + 1, k)
A(n, k)

and
A(n, k + 1)

A(n, k)
are rational functions in qn and qk over certain field for all n and k whenever the quotients are well-
defined. We say that two q-hypergeometric functions F(n, k) and G(n, k) form a q-WZ pair if they
satisfy the following relation:

F(n, k − 1) − F(n, k) = G(n + 1, k) −G(n, k). (2.1)
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Wilf and Zeilberger [27] showed that in this case there exists a rational function C(n, k) in qn and qk

such that F(n, k) = C(n, k)G(n, k). The function C(n, k) is usually called the certificate of the pair
(F,G).

We have the following q-version of [21, Theorem 2.1].

Theorem 2.1. Let F(n, k) and G(n, k) be a q-WZ pair. Assume that F(n, k) = G(n, k) = 0 for n < k. Let
AN(q) be a polynomial in q with integer coefficients such that AN(q)G(N + 1, k) is also a polynomial in
q with integer coefficients for all k > 1. If PN(q) is a polynomial in q with integer coefficients satisfying

(i) AN(q)G(N + 1, k) ≡ 0 mod PN(q), for all k > 1;

(ii) AN(q)F(N,N) ≡ 0 mod PN(q).

Then, for all m > 0,

AN(q)
N∑

n=m

F(n,m) ≡ 0 mod PN(q). (2.2)

Proof. Our proof is similar to that of [21, Theorem 2.1]. For the sake of completeness, we provide it
here. We proceed by induction on m.

Summing (2.1) over k from 1 to N, we obtain

F(n, 0) − F(n,N) =

N∑
k=1

(G(n + 1, k) −G(n, k)).

Multiplying both sides of the above identity by AN(q) and then summing it over n from 0 to N, we get

AN(q)
N∑

n=0

F(n, 0) − AN(q)F(N,N) = AN(q)
N∑

k=1

G(N + 1, k), (2.3)

where we have used F(n,N) = 0 for n < N and G(0, k) = 0 for k > 1. From (2.3) and the conditions
(i) and (ii), we immediately deduce that

AN(q)
N∑

n=0

F(n, 0) ≡ 0 mod PN(q).

Namely, the congruence (2.2) holds for m = 0.
We now assume that (2.2) is true for some m = k with k > 0. Similarly as before, multiplying both

sides of (2.1) by AN(q), shifting k → k + 1, and then summing it over n from k to N, we have

AN(q)
N∑

n=k

F(n, k) − AN(q)
N∑

n=k

F(n, k + 1) = AN(q)G(N + 1, k + 1).

Thus, by the condition (i) and the induction hypothesis, we get

AN(q)
N∑

n=k

F(n, k + 1) ≡ AN(q)
N∑

n=k+1

F(n, k + 1) ≡ 0 mod PN(q).

This completes the inductive step, and therefore (2.2) is true for all m > 0. �
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3. Proof of Theorem 1.1

Proof of (1.8). For positive integers n, define

(a; q)−n =
1

(aq−n; q)n
=

(−1)na−nqn(n+1)/2

(q/a; q)n
.

The following functions F and G introduced in [6]:

F(n, k) = (−1)n[3n − 2k + 1]
[
2n − 2k

n

]
(q; q2)n(q; q2)n−k

(q; q)n(q2; q2)n−k
,

G(n, k) = (−1)n+1[n]
[
2n − 2k
n − 1

]
(q; q2)n(q; q2)n−kqn+1−2k

(q; q)n(q2; q2)n−k
.

satisfy the relation (2.1). Namely, they form a q-WZ pair.
Since [N + 1]

[
2N+2
N+1

]
/(1 + qN+1) = [2N + 1]

[
2N
N

]
and

[
2N
N

]
≡ 0 (mod (1 + qN)), we have

(−q; q)3
NG (N + 1, k)

= (−1)N[N + 1]
[
2N + 2
N + 1

][
2N − 2k + 2

N

][
2N − 2k + 2

N − k + 1

]
(−q; q)2

NqN−2k+2

(1 + qN+1)(−q; q)2
N−k+1

≡ 0 (mod (1 + qN)2[2N + 1]
[
2N
N

]
)

for k = 1 or k > 2. It is clear that F(N,N) = 0. The proof of (1.8) then follows from Theorem 2.1. �

Proof of (1.9). We again use a q-WZ pair to prove (1.9). The q-WZ pair has already been given in [4]:

F(n, k) = (−1)n+k [6n − 2k + 1](q; q2)n+k(q; q2)2
n−k

(q4; q4)2
n(q4; q4)n−k

,

G(n, k) =
(−1)n+k(q; q2)n+k−1(q; q2)2

n−k

(1 − q)(q4; q4)2
n−1(q4; q4)n−k

.

By [4, Lemma 3.2], for 1 6 k 6 N, we have

(−q; q)6
N(−q2; q2)3

NG(N + 1, k) =
(q; q2)N+k(q; q2)2

N−k+1(−q; q)6
N

(1 − q)(q2; q2)2
N(q2; q2)N−k+1

(−q2; q2)N

(−q2; q2)N−k+1

≡ 0 (mod (1 + qN)2[2N + 1]
[
2N
N

]
),

because (−q2; q2)N/(−q2; q2)N−k+1 is clearly a polynomial in q with integer coefficients.
It is easy to see that

F(N,N) = [4N + 1]
(q; q2)2N

(q4; q4)2
N

=
[4N + 1]

(−q2; q2)2
N(−q; q)2N(−q; q)2

N

[
4N
2N

][
2N
N

]
.
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By [5, Lemma 3.1], we have

(−q; q)2
N

[
4N + 1

2N

]
≡ 0 (mod (1 + qN)(−q; q)2N), (3.1)

and so

(−q; q)6
N(−q2; q2)3

N F(N,N) = (−q; q)4
N(−q2; q2)N

[2N + 1]
(−q; q)2N

[
4N + 1

2N

][
2N
N

]
≡ 0 (mod (1 + qN)2[2N + 1]

[
2N
N

]
).

Therefore, by Theorem 2.1, the congruence (1.9) holds. �

Proof of (1.10). The following functions, introduced in [5],

F(n, k) =
q(n−k)2

[6n − 2k + 1](q2; q4)n(q; q2)n−k(q; q2)n+k

(q4; q4)2
n(q4; q4)n−k(q2; q4)k

,

G(n, k) =
q(n−k)2

(q2; q4)n(q; q2)n−k(q; q2)n+k−1

(1 − q)(q4; q4)2
n−1(q4; q4)n−k(q2; q4)k

,

form a q-WZ pair. By [5, Lemma 3.2], for 1 6 k 6 N, we have

(−q; q)4
N(−q2; q2)4

NG(N + 1, k)

=
q(N−k+1)2

(−q; q)4
N(−q2; q2)N(q2; q4)N+1(q; q2)N−k+1(q; q2)N+k

(1 − q)(q2; q2)2
N(q2; q2)N−k+1(q2; q4)k

(−q2; q2)N

(−q2; q2)N−k+1

≡ 0 (mod (1 + qN)(1 + q2N)[2N + 1]
[
2N
N

]
).

It is easy to see that

F(N,N) = [4N + 1]
(q; q2)2N

(q4; q4)2
N

=
[4N + 1]

(−q2; q2)2
N(−q; q)2N(−q; q)2

N

[
4N
2N

][
2N
N

]
.

By (3.1), we get

(−q; q)4
N(−q2; q2)4

N F(N,N) = (−q; q)2
N(−q2; q2)2

N
[2N + 1]
(−q; q)2N

[
4N + 1

2N

][
2N
N

]
≡ 0 (mod (1 + qN)(1 + q2N)[2N + 1]

[
2N
N

]
).

Therefore, by Theorem 2.1, we obtain

(−q; q)4
N(−q2; q2)2

N

N∑
n= j

F(n, j) ≡ 0 (mod (1 + qN)2[2N + 1]
[
2N
N

]
).

Namely, the congruence (1.10) holds. �
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4. Proof of Theorem 1.2

The proof is similar to that of Theorem 1.1. This time we need the following q-WZ pair in [3]:

F(n, k) = (−1)n+kq(n−k)2 [4n + 1](q; q2)2
n(q; q2)n+k

(q2; q2)2
n(q2; q2)n−k(q; q2)2

k

,

G(n, k) =
(−1)n+kq(n−k)2

(q; q2)2
n(q; q2)n+k−1

(1 − q)(q2; q2)2
n−1(q2; q2)n−k(q; q2)2

k

.

By [3, Lemma 4.2], for 1 6 k 6 N, we have

(−q; q)6
NG(N + 1, k) ≡ 0 (mod (1 + qN)2[2N + 1]

[
2N
N

]
).

Moreover, since

F(N,N) = [4N + 1]
(q; q2)2N

(q2; q2)2
N

=
[4N + 1]
(−q; q)2

2N

[
4N
2N

][
2N
N

]
q2

,

we immediately get

(−q; q)6
N F(N,N) = (−q; q)6

N
[2N + 1]
(−q; q)2

2N

[
4N + 1

2N

][
2N
N

]
q2

≡ 0 (mod (1 + qN)2[2N + 1]
[
2N
N

]
).

The proof of (1.11) then follows readily from Theorem 2.1.

5. Some consequences and open problems

It is easy to see that
(q; q2)k

(q2; q2)k
=

1
(−q; q)2

k

[
2k
k

]
.

Letting j = 1 in Theorems 1.1 and 1.2, we obtain the following results.

Corollary 5.1. Let n be a positive integer. Then, modulo (1 + qn)(1 + q2n)[2n + 1]
[

2n
n

]
,

n∑
k=1

q(k−1)2 [4k][2k + 1][6k − 1](−q; q)4
n(−q2; q2)4

n

(1 + q)[2k − 1](−q; q)4
k(−q2; q2)4

k

[
2k
k

]2[2k
k

]
q2

≡ 0.

Corollary 5.2. Let n be a positive integer. Then, modulo (1 + qn)2[2n + 1]
[

2n
n

]
,

n∑
k=1

(−1)k[k][k − 1][3k − 1](−q; q)3
n

[2k − 1]2(−q; q)3
k

[
2k
k

]3

≡ 0,
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n∑
k=1

(−1)k[4k][2k + 1][6k − 1](−q; q)6
n(−q2; q2)3

n

[2k − 1]2(−q; q)6
k(−q2; q2)3

k

[
2k
k

]3

≡ 0,

n∑
k=1

(−1)kq(k−1)2
[2k][2k + 1][4k + 1]

[
2k
k

]3 (−q; q)6
n

(−q; q)6
k

≡ 0.

It is worth mentioning that Guo and the author [12, Theorem 1.4] proved that, for n > 1,

n∑
k=0

[4k + 1]
[
2k
k

]4

(−qk+1; q)8
n−k ≡ 0 (mod (1 + qn)3[2n + 1]

[
2n
n

]
). (5.1)

However, we are unable to prove the following generalization of (5.1):

n∑
k= j

q j( j−2k−1)[4k + 1]
(q; q2)3

k(q; q2)k+ j(−q; q)8
n

(q2; q2)3
k(q2; q2)k− j(q; q2)2

j

≡ 0 (mod (1 + qn)3[2n + 1]
[
2n
n

]
).

Motivated by (1.11) and the above conjectural generalization of (5.1), we propose the following
generalization of [20, Theorem 5.1].

Conjecture 5.3. Let n be a positive integer and r > 2. Then, for 0 6 j 6 n, modulo (1 + qn)2r−2[2n +

1]
[

2n
n

]
,

n∑
k= j

(−1)kq(k− j)2+(r−2)(k− j)[4k + 1]
(q; q2)2r−2

k (q; q2)k+ j(−q; q)4r−2
n

(q2; q2)2r−2
k (q2; q2)k− j(q; q2)2

j

≡ 0;

and modulo (1 + qn)2r−1[2n + 1]
[

2n
n

]
,

n∑
k= j

q j( j−2k−1)+(r−2)(k− j)[4k + 1]
(q; q2)2r−1

k (q; q2)k+ j(−q; q)4r
n

(q2; q2)2r−1
k (q2; q2)k− j(q; q2)2

j

≡ 0.

6. Conclusions

In Sections 3 and 4, we give proofs of some divisibility properties of certain polynomials by using
the q-WZ pairs. Note that the q-WZ pairs are difficult to find, but once a q-WZ pair is given it may
play a key role in the proof of a congruence. The Section 5 provides a conjectural generalization
of [20, Theorem 5.1].
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