We presented a new and complete algorithm for detecting isometries and symmetries of implicit algebraic surfaces. First, our method reduced the problem to the case of isometries fixing the origin. Second, using tools from elimination theory and polynomial factoring, we determined the desired isometries between the surfaces. We have implemented the algorithm in Maple to provide evidences of the efficiency of the method.
Citation: Uğur Gözütok, Hüsnü Anıl Çoban. Detecting isometries and symmetries of implicit algebraic surfaces[J]. AIMS Mathematics, 2024, 9(2): 4294-4308. doi: 10.3934/math.2024212
We presented a new and complete algorithm for detecting isometries and symmetries of implicit algebraic surfaces. First, our method reduced the problem to the case of isometries fixing the origin. Second, using tools from elimination theory and polynomial factoring, we determined the desired isometries between the surfaces. We have implemented the algorithm in Maple to provide evidences of the efficiency of the method.
[1] | J. G. Alcázar, C. Hermoso, G. Muntingh, Symmetry detection of rational space curves from their curvature and torsion, Comput. Aided Geom. D., 33 (2015), 51–65. https://doi.org/10.1016/j.cagd.2015.01.003 doi: 10.1016/j.cagd.2015.01.003 |
[2] | J. G. Alcázar, M. Lávi$\check{\text{c}}$ka, J. Vr$\check{\text{s}}$ek, Symmetries and similarities of planar algebraic curves using harmonic polynomials, J. Comput. Appl. Math., 357 (2019), 302–318. https://doi.org/10.1016/j.cam.2019.02.036 doi: 10.1016/j.cam.2019.02.036 |
[3] | J. G. Alcázar, E. Quintero, Affine equivalences of trigonometric curves, Acta Appl. Math., 170 (2020), 691–708. https://doi.org/10.1007/s10440-020-00354-6 doi: 10.1007/s10440-020-00354-6 |
[4] | J. G. Alcázar, E. Quintero, Affine equivalences, isometries and symmetries of ruled rational surfaces, J. Comput. Appl. Math., 364 (2020), 112339. https://doi.org/10.1016/j.cam.2019.07.004 doi: 10.1016/j.cam.2019.07.004 |
[5] | J. G. Alcázar, C. Hermoso, Computing projective equivalences of planar curves birationally equivalent to elliptic and hyperelliptic curves, Comput. Aided Geom. D., 91 (2021), 102048. https://doi.org/10.1016/j.cagd.2021.102048 doi: 10.1016/j.cagd.2021.102048 |
[6] | J. G. Alcázar, M. Lávi$\check{\text{c}}$ka, J. Vr$\check{\text{s}}$ek, Computing symmetries of implicit algebraic surfaces, Comput. Aided Geom. D., 104 (2023), 102221. https://doi.org/10.1016/j.cagd.2023.102221 doi: 10.1016/j.cagd.2023.102221 |
[7] | J. G. Alcázar, U. Gözütok, H. A. Çoban, C. Hermoso, Detecting affine equivalences between implicit planar algebraic curves, Acta Appl. Math., 182 (2022), 2. https://doi.org/10.1007/s10440-022-00539-1 doi: 10.1007/s10440-022-00539-1 |
[8] | J. G. Alcázar, C. Hermoso, Involutions of polynomially parametrized surfaces, J. Comput. Appl. Math., 294 (2016), 23–38. https://doi.org/10.1016/j.cam.2015.08.002 doi: 10.1016/j.cam.2015.08.002 |
[9] | M. Bizzarri, M. Làvi$\breve{\text{c}}$ka, J. Vr$\breve{\text{s}}$ek, Computing projective equivalences of special algebraic varieties, J. Comput. Appl. Math., 367 (2020), 112438. https://doi.org/10.1016/j.cam.2019.112438 doi: 10.1016/j.cam.2019.112438 |
[10] | M. Bizzarri, M. Làvi$\breve{\text{c}}$ka, J. Vr$\breve{\text{s}}$ek, Approximate symmetries of planar algebraic curves with inexact input, Comput. Aided Geom. D., 76 (2020), 101794. https://doi.org/10.1016/j.cagd.2019.101794 doi: 10.1016/j.cagd.2019.101794 |
[11] | M. Bizzarri, M. Làvi$\breve{\text{c}}$ka, J. Vr$\breve{\text{s}}$ek, Symmetries of discrete curves and point clouds via trigonometric interpolation, J. Comput. Appl. Math., 408 (2021), 114124. https://doi.org/10.1016/j.cam.2022.114124 doi: 10.1016/j.cam.2022.114124 |
[12] | M. Bizzarri, M. Làvi$\breve{\text{c}}$ka, J. Vr$\breve{\text{s}}$ek, Approximate symmetries of perturbed planar discrete curves, Comput. Aided Geom. D., 96 (2022), 102115. https://doi.org/10.1016/j.cagd.2022.102115 doi: 10.1016/j.cagd.2022.102115 |
[13] | H. S. M. Coxeter, Introduction to geometry, John Wiley & Sons, 1969. |
[14] | D. Cox, J. Little, D. O'Shea, Ideals, varieties and algorithms, 2007. |
[15] | U. Gözütok, H. A. Çoban, Y. Sa$\breve{\text{g}}$iro$\breve{\text{g}}$lu, J. G. Alcázar, A new method to detect projective equivalences and symmetries of rational $3D$ curves, J. Comput. Appl. Math., 419 (2023), 114782. https://doi.org/10.1016/j.cam.2022.114782 doi: 10.1016/j.cam.2022.114782 |
[16] | U$\breve{\text{g}}$ur Gözütok, https://www.ugurgozutok.com. |
[17] | M. Hauer, B. Jüttler, Projective and affine symmetries and equivalences of rational curves in arbitrary dimension, J. Symb. Comput., 87 (2018), 68–86. https://doi.org/10.1016/j.jsc.2017.05.009 doi: 10.1016/j.jsc.2017.05.009 |
[18] | M. Hauer, B. Jüttler, J. Schicho, Projective and affine symmetries and equivalences of rational and polynomial surfaces, J. Comput. Appl. Math., 349 (2018), 424–437. https://doi.org/10.1016/j.cam.2018.06.026 doi: 10.1016/j.cam.2018.06.026 |
[19] | B. Jüttler, N. Lubbes, J. Schicho, Projective isomorphisms between rational surfaces, J. Algebra, 594 (2022), 571–596. https://doi.org/10.1016/j.jalgebra.2021.11.045 doi: 10.1016/j.jalgebra.2021.11.045 |
[20] | MapleTM, 2021. Maplesoft, a division of Waterloo Maple Inc. Waterloo, Ontario. |