In this paper, we conducted a study of H-Toeplitz operators on the Dirichlet type space $ \mathfrak{D}_{t} $, which included several aspects. To begin, we established the matrix representation of the H-Toeplitz operator $ S_{\varphi} $ with respect to the orthonormal basis of $ \mathfrak{D}_t $. Subsequently, we characterized the compactness of $ S_{\varphi} $ in terms of the symbol $ \varphi $. Furthermore, we developed a new method to investigate the algebraic properties of H-Toeplitz operators, including self-adjointness, diagonality, co-isometry, partial isometry as well as commutativity.
Citation: Peiying Huang, Yiyuan Zhang. H-Toeplitz operators on the Dirichlet type space[J]. AIMS Mathematics, 2024, 9(7): 17847-17870. doi: 10.3934/math.2024868
In this paper, we conducted a study of H-Toeplitz operators on the Dirichlet type space $ \mathfrak{D}_{t} $, which included several aspects. To begin, we established the matrix representation of the H-Toeplitz operator $ S_{\varphi} $ with respect to the orthonormal basis of $ \mathfrak{D}_t $. Subsequently, we characterized the compactness of $ S_{\varphi} $ in terms of the symbol $ \varphi $. Furthermore, we developed a new method to investigate the algebraic properties of H-Toeplitz operators, including self-adjointness, diagonality, co-isometry, partial isometry as well as commutativity.
[1] | D. Girela, J. A. Pelaez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241 (2006), 334–358. https://doi.org/10.1016/j.jfa.2006.04.025 doi: 10.1016/j.jfa.2006.04.025 |
[2] | L. He, Y. F. Li, Y. Y. Zhang, The convergence of Galerkin-Petrov methods for Dirichlet projections, Ann. Funct. Anal., 14 (2023), 1–16. https://doi.org/10.1007/s43034-023-00284-y doi: 10.1007/s43034-023-00284-y |
[3] | J. Pau, J. A. Peláez, On the zeros of functions in the Dirichlet-type spaces, Trans. Amer. Math. Soc., 363 (2011), 1981–2002. https://doi.org/10.1090/S0002-9947-2010-05108-6 doi: 10.1090/S0002-9947-2010-05108-6 |
[4] | R. Rochberg, Z. J. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math., 37 (1993), 101–122. |
[5] | S. C. Arora, S. Paliwal, On H-Toeplitz operators, Bull. Pure Appl. Math., 1 (2007), 141–154. |
[6] | A. Gupta, S. K. Singh, H-Toeplitz operators on the Bergman space, Bull. Korean Math. Soc., 58 (2021), 327–347. https://doi.org/10.4134/BKMS.b200260 doi: 10.4134/BKMS.b200260 |
[7] | S. Kim, J. Lee, Contractivity and expansivity of H-Toeplitz operators on the Bergman spaces, AIMS Math., 7 (2022), 13927–13944. https://doi.org/10.3934/math.2022769 doi: 10.3934/math.2022769 |
[8] | J. J. Liang, L. L. Lai, Y. L. Zhao, Y. Chen, Commuting H-Toeplitz operators with quasi-homogeneous symbols, AIMS Math., 7 (2022), 7898–7908. https://doi.org/10.3934/math.2022442 doi: 10.3934/math.2022442 |
[9] | Q. Ding, Y. Chen, Product of H-Toeplitz operator and Toeplitz operator on the Bergman space, AIMS Math., 8 (2023), 20790–20801. https://doi.org/10.3934/math.20231059 doi: 10.3934/math.20231059 |
[10] | Y. J. Lee, K. H. Zhu, Sums of products of Toeplitz and Hankel operators on the Dirichlet space, Integr. Equ. Oper. Theory, 71 (2011), 275–302. https://doi.org/10.1007/s00020-011-1901-4 doi: 10.1007/s00020-011-1901-4 |
[11] | Z. J. Wu, Hankel and Toeplitz operators on Dirichlet spaces, Integr. Equ. Oper. Theory, 15 (1992), 503–525. https://doi.org/10.1007/BF01200333 doi: 10.1007/BF01200333 |
[12] | G. F. Cao, Fredholm properties of Toeplitz operators on Dirichlet spaces, Pacific J. Math., 188 (1999), 209–223. https://doi.org/10.2140/pjm.1999.188.209 doi: 10.2140/pjm.1999.188.209 |
[13] | G. F. Cao, Toeplitz operators and algebras on Dirichlet spaces, Chin. Ann. Math., 23 (2002), 385–396. https://doi.org/10.1142/S0252959902000353 doi: 10.1142/S0252959902000353 |
[14] | G. F. Cao, C. Y. Zhong, Some problems of Toeplitz operators on Dirichlet spaces, Acta. Anal. Funct. Appl., 2 (2000), 289–297. |
[15] | Y. J. Lee, Algebraic properties of Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl., 329 (2007), 1316–1329. https://doi.org/10.1016/j.jmaa.2006.07.041 doi: 10.1016/j.jmaa.2006.07.041 |
[16] | K. H. Zhu, Operator theory in function spaces, 2 Eds., New York: American Mathematical Society, 2007. |
[17] | G. J. Murphy, $C^{*}$-algebras and operator theory, New York: Academic Press, 1990. https://doi.org/10.1016/C2009-0-22289-6 |
[18] | J. B. Conway, A course in functional analysis, New York: Springer, 1985. https://doi.org/10.1007/978-1-4757-3828-5 |
[19] | R. Douglas, Banach algebra techniques in operator theory, 2 Eds., New York: Springer, 1998. https://doi.org/10.1007/978-1-4612-1656-8 |