Processing math: 100%
Research article Special Issues

H-Toeplitz operators on the Dirichlet type space

  • In this paper, we conducted a study of H-Toeplitz operators on the Dirichlet type space Dt, which included several aspects. To begin, we established the matrix representation of the H-Toeplitz operator Sφ with respect to the orthonormal basis of Dt. Subsequently, we characterized the compactness of Sφ in terms of the symbol φ. Furthermore, we developed a new method to investigate the algebraic properties of H-Toeplitz operators, including self-adjointness, diagonality, co-isometry, partial isometry as well as commutativity.

    Citation: Peiying Huang, Yiyuan Zhang. H-Toeplitz operators on the Dirichlet type space[J]. AIMS Mathematics, 2024, 9(7): 17847-17870. doi: 10.3934/math.2024868

    Related Papers:

    [1] Qian Ding . Commuting Toeplitz operators and H-Toeplitz operators on Bergman space. AIMS Mathematics, 2024, 9(1): 2530-2548. doi: 10.3934/math.2024125
    [2] Jinjin Liang, Liling Lai, Yile Zhao, Yong Chen . Commuting H-Toeplitz operators with quasihomogeneous symbols. AIMS Mathematics, 2022, 7(5): 7898-7908. doi: 10.3934/math.2022442
    [3] Qian Ding, Yong Chen . Product of H-Toeplitz operator and Toeplitz operator on the Bergman space. AIMS Mathematics, 2023, 8(9): 20790-20801. doi: 10.3934/math.20231059
    [4] Sumin Kim, Jongrak Lee . Contractivity and expansivity of H-Toeplitz operators on the Bergman spaces. AIMS Mathematics, 2022, 7(8): 13927-13944. doi: 10.3934/math.2022769
    [5] Cheng-shi Huang, Zhi-jie Jiang, Yan-fu Xue . Sum of some product-type operators from mixed-norm spaces to weighted-type spaces on the unit ball. AIMS Mathematics, 2022, 7(10): 18194-18217. doi: 10.3934/math.20221001
    [6] Chun Wang . The coefficient multipliers on $ H^2 $ and $ \mathcal{D}^2 $ with Hyers–Ulam stability. AIMS Mathematics, 2024, 9(5): 12550-12569. doi: 10.3934/math.2024614
    [7] Ruishen Qian, Xiangling Zhu . Invertible weighted composition operators preserve frames on Dirichlet type spaces. AIMS Mathematics, 2020, 5(5): 4285-4296. doi: 10.3934/math.2020273
    [8] Kun Li, Peng Wang . Properties for fourth order discontinuous differential operators with eigenparameter dependent boundary conditions. AIMS Mathematics, 2022, 7(6): 11487-11508. doi: 10.3934/math.2022640
    [9] Lian Hu, Rong Yang, Songxiao Li . Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces. AIMS Mathematics, 2021, 6(7): 7782-7797. doi: 10.3934/math.2021453
    [10] Liu Yang, Ruishen Qian . Volterra integral operator and essential norm on Dirichlet type spaces. AIMS Mathematics, 2021, 6(9): 10092-10104. doi: 10.3934/math.2021586
  • In this paper, we conducted a study of H-Toeplitz operators on the Dirichlet type space Dt, which included several aspects. To begin, we established the matrix representation of the H-Toeplitz operator Sφ with respect to the orthonormal basis of Dt. Subsequently, we characterized the compactness of Sφ in terms of the symbol φ. Furthermore, we developed a new method to investigate the algebraic properties of H-Toeplitz operators, including self-adjointness, diagonality, co-isometry, partial isometry as well as commutativity.



    Let D be the unit disk in the complex plane C and dA=1πdxdy be the normalized Lebesgue measure on D. Set

    dAt(z)=(t+1)(1|z|2)tdA(z),t>1.

    The Sobolev space L2,1t is the completion of the space of smooth functions f on D such that

    ft={|DfdAt|2+D(|fz|2+|f¯z|2)dAt}1/2<.

    Clearly, L2,1t is a Hilbert space with the inner product

    f,gt=DfdAtD¯gdAt+D(fz¯gz+f¯z¯g¯z)dAt.

    The Dirichlet type space Dt consists of all analytic functions fL2,1t with f(0)=0. The space Dt has been widely investigated; see [1,2,3,4], for example. Note that Dt is a closed subspace of L2,1t and hence, Dt is a Hilbert space. It is well-known that the Dirichlet type space Dt corresponds to several important spaces at specific values of t: the Hardy space (t=1), the Dirichlet space (t=0), and the weighted Bergman space (t>1).

    Let N be the set of all positive integers. For zD and kN, let

    ek(z)=Γ(k+t+1)kk!Γ(t+2)zk,

    then {ek}k=1 forms an orthonormal basis of Dt. Dt is a reproducing kernel space with reproducing kernel given by

    Ktz(w)=k=1ek(w)¯ek(z)=k=1Γ(k+t+1)kk!Γ(t+2)wk¯zk, (1.1)

    where Γ denotes the gamma function.

    Let P be the orthogonal projection from L2,1t onto Dt, which by the property of reproducing kernel Ktw can be expressed as

    P(f)(w)=f,Ktwt,wD (1.2)

    for all fL2,1t.

    Denote

    M={φ |φ,φz,φ¯zL(D)},

    where the derivatives are taken in the sense of distribution.

    For any φM, the multiplication operator Mφ:L2,1tL2,1t is defined as Mφ(f)=φf for fL2,1t. Given φM, the Toeplitz operator Tφ:DtDt and the Hankel operator Hφ:DtDt with symbol φ are defined by

    Tφ=PMφandHφ=PMφJ,

    respectively. Here, J:Dt¯Dt denotes the flip operator given by J(ek)=¯ek for all kN, where ¯Dt:={¯f:fDt}. It can be checked that Tφ and Hφ induced by φM are bounded operators on Dt.

    The harmonic Dirichlet space Dh is the closed subspace of L2,1t consisting of all harmonic functions f with f(0)=0. It is well-known that Dh=Dt¯Dt. Consider the dilation operator K:DtDh defined by

    K(e2k)=ekandK(e2k1)=¯ek

    for all kN. It can be observed that K is bounded on Dt with K=1. Moreover, the adjoint K of the operator K is given by

    K(ek)=e2kandK(¯ek)=e2k1

    for all kN. Hence, KK=I on Dt and KK=I on Dh.

    With these notations, we introduce the H-Toeplitz operator on the Dirichlet type space Dt, which is defined as follows.

    Definition 1.1. For φM, the H-Toeplitz operator Sφ:DtDt with symbol φ is defined by

    Sφ(f)=PMφK(f)

    for all fDt.

    The H-Toeplitz operator is closely related to both the Toeplitz and Hankel operators. In fact, for any φM and kN, we have

    Sφ(e2k)=PMφK(e2k)=PMφ(ek)=Tφ(ek) (1.3)

    and

    Sφ(e2k1)=PMφK(e2k1)=PMφ(¯ek)=PMφJ(ek)=Hφ(ek). (1.4)

    Motivated by the notions of Toeplitz, Hankel and Slant Toeplitz operators, Arora and Paliwal [5] introduced the H-Toeplitz operators on the Hardy space, where they established the necessary and sufficient conditions under which H-Toeplitz operators become partial isometric, co-isometric, Hilbert-Schmidt and hyponormal. Moreover, they demonstrated that any H-Toeplitz operator is unitarily equivalent to a direct sum of a Toeplitz operator and a Hankel operator. The concept of H-Toeplitz operators is significant because it connects closely with a class of Hankel operators and a class of Toeplitz operators where the original operators are neither Hankel nor Toeplitz.

    In recent years, H-Toeplitz operators on the Bergman space have been investigated by some specialists. Gupta and Singh [6] initiated the study of H-Toeplitz operators on the Bergman space, where the fundamental properties of the H-Toeplitz operators have been systematically studied, such as compactness, Fredholmness, co-isometry, partial isometry and commutativity. Later, Kim and Lee [7] established the contractivity and expansivity criteria for H-Toeplitz operators. Moreover, Liang et al. [8] studied the commutativity of H-Toeplitz operators with quasi-homogeneous symbols. In the recent paper [9], Ding and Chen characterized when the product of two H-Toeplitz operators with a bounded and a quasi-homogeneous symbol, respectively, becomes an H-Toeplitz operator. They also characterized when the product of an H-Toeplitz operator and a Toeplitz operator equals to another H-Toeplitz operator with bounded harmonic symbols.

    It is well-known that Hardy, Bergman and Dirichlet spaces are the three most important classical Hilbert spaces of analytic functions in the unit disk. Despite the fruitful results achieved in the realm of H-Toeplitz operators on Hardy spaces and Bergman spaces, the theory of H-Toeplitz operators on Dirichlet spaces is largely unexplored. On the other hand, there is no any result in the literatures about H-Toeplitz operators on the weighted versions of these classical spaces. For the full generality and potential applicability, the main purpose of this article is to fill in these blanks by studying several fundamental properties of H-Toeplitz operators on the Dirichlet type space.

    Before we mention the novelties of our work, it is worthwhile to recall from [10,11] that the study of Toeplitz operators and Hankel operators on the Dirichlet space are essentially different from that on the Hardy space and the Bergman space. Moreover, nontrivial self-adjoint Toeplitz operator with C1-symbol and non-scalar Toeplitz operator satisfying Tφ=T¯φ do not exist on the Dirichlet space [12,13,14]. Since H-Toeplitz operators connect closely with Hankel operators and Toeplitz operators, it is natural to predict from the results mentioned in the literatures above that many techniques in the study of H-Toeplitz operators on the Hardy space and the Bergman space are not available on the Dirichlet space. For instance, one of the important steps to establish many properties (e.g., co-isometry and partial isometry) of an H-Toeplitz operator on the Hardy space and the Bergman space is using the adjoint of the H-Toeplitz operator, where the adjoint can be expressed as a composition of several specific operators. However, this cannot be done on the Dirichlet type space. To overcome this difficulty, our strategy is to establish an equivalent form of the Dirichlet Toeplitz operators under unitary conditions. This new form behaves much better than the original and avoids the need to compute the adjoint of the H-Toeplitz operator.

    This paper is organized as follows. In Section 2, we obtain the matrix representation of the H-Toeplitz operator with the polynomial harmonic symbol under the orthonormal basis of the Dirichlet type space Dt. In Section 3, we mainly characterize the compactness of H-Toeplitz operators. In Section 4, several algebraic properties of H-Toeplitz operators are investigated, including self-adjointness, diagonality, co-isometry, partial isometry as well as commutativity.

    In this section, we will present the matrix representation of the H-Toeplitz operator induced by the polynomial harmonic symbol under the orthonormal basis {ek}k=1 of the Dirichlet type space Dt. Leveraging the established relationships between the H-Toeplitz operator and both the Toeplitz and Hankel operators as outlined in Eqs (1.3) and (1.4), we will initially provide the matrix representations for the Toeplitz and Hankel operators.

    We begin with the following lemma which will be needed in subsequent results.

    Lemma 2.1. Suppose t>1 and zD. For any n, m and kN, the following identities hold in the Dirichlet type space Dt:

    (a) zn,zmt={nn!Γ(t+2)Γ(n+t+1),ifn=m,0,otherwise.

    (b) ¯zn,zmt=0 and zk¯zn,zmt={m(n+m)!Γ(t+2)Γ(n+m+t+1),ifk=n+m,0,otherwise.

    (c) P(¯znzm)={m!Γ(mn+t+1)(mn)!Γ(m+t+1)zmn,ifm>n,0,ifmn.

    Proof. By integration in polar coordinates, we have

    zn,zmt=nm(1+t)Dzn1¯zm1(1|z|2)tdAt(z)=n2(1+t)10rn1(1r)tdr={nn!Γ(t+2)Γ(n+t+1),if n=m,0,otherwise.

    This proves (a). Now, we show (b) in a similar fashion. The first equality is obvious. For the second one, we deduce that

    zk¯zn,zmt=D(zk¯zn)z¯(zmz)dAt(z)=km(1+t)Dzk1¯zn+m1(1|z|2)tdA(z)=m(1+t)(n+m)10rn+m1(1r)tdr={m(n+m)!Γ(t+2)Γ(n+m+t+1),if k=n+m,0,otherwise. 

    Next, we show equality (c). By (1.2) and integration in polar coordinates, we get

    P(¯znzm)=¯znzm,Ktzt=D(¯wnwm)w¯(Ktz(w)w)dAt(w)=m(1+t)D¯wnwm1(k=1Γ(k+t+1)Γ(t+2)k!zk¯wk1)(1|w|2)tdA(w)=m(1+t)Dwm1(k=1Γ(k+t+1)Γ(t+2)k!zk¯wn+k1)(1|w|2)tdA(w)=m(1+t)Γ(mn+t+1)Γ(t+2)(mn)!zmnD|w|2(m1)(1|w|2)tdA(w)=m(1+t)Γ(mn+t+1)Γ(t+2)(mn)!zmn10rm1(1r)tdr={m!Γ(mn+t+1)(mn)!Γ(m+t+1)zmn,if m>n,0,if mn.

    This ends the proof of Lemma 2.1.

    According to Lemma 2.1, we can find the matrix representations of Toeplitz operator Tφ and of Hankel operator Hφ on Dt with symbol

    φ(z)=i=0aizi+j=1bj¯zjM,zD,ai,bjC.

    For any m, nN, the (m,n)-th entry of the matrix representation of Tφ with respect to the orthonormal basis {ek}k=1 of Dt is given by

    Tφ(en),emt=PMφ(en),emt=φen,emt=Γ(n+t+1)Γ(m+t+1)nmn!m!Γ(t+2)φzn,zmt=Γ(n+t+1)Γ(m+t+1)nmn!m!Γ(t+2)(i=0aizi+n,zmt+j=1bj¯zjzn,zmt)={mm!Γ(n+t+1)nn!Γ(m+t+1)amn,if mn,mn!Γ(m+t+1)nm!Γ(n+t+1)bnm,if m<n. (2.1)

    Therefore, the matrix representation of Tφ is explicitly given by

    Tφ=[a012+tb12(3+t)(2+t)b26Γ(2+t)Γ(5+t)b322+ta1a023+tb16(4+t)(3+t)b232(3+t)(2+t)a232(3+t)a1a034+tb146Γ(2+t)Γ(5+t)a326(4+t)(3+t)a243(4+t)a1a0], (2.2)

    and the matrix representation of its adjoint Tφ is given by

    Tφ=[¯a022+t¯a132(3+t)(2+t)¯a246Γ(2+t)Γ(5+t)¯a312+t¯b1¯a032(3+t)¯a126(4+t)(3+t)¯a22(3+t)(2+t)¯b223+t¯b1¯a042(3+t)¯a16Γ(2+t)Γ(5+t)¯b36(4+t)(3+t)¯b234+t¯b1¯a0].

    Next, we find the matrix representation of the Hankel operator. The (m,n)-th entry of the matrix representation of Hφ with respect to the orthonormal basis {ek}k=1 of Dt is given by

    Hφ(en),emt=PMφJ(en),emt=PMφ(¯en),emt=φ¯en,emt=Γ(n+t+1)Γ(m+t+1)nmn!m!Γ(t+2)φ¯zn,zmt=Γ(n+t+1)Γ(m+t+1)nmn!m!Γ(t+2)(i=0aizi¯zn,zmt+j=1bj¯zj+n,zmt)=(n+m)!mΓ(n+t+1)Γ(m+t+1)nn!m!Γ(m+n+t+1)am+n (2.3)

    for m, nN.

    Thus, the matrix representation of Hφ in explicit form is given by

    Hφ=[22+ta23(3+t)2+ta34!Γ(4+t)Γ(2+t)32Γ(5+t)a45!Γ(5+t)Γ(2+t)24!Γ(6+t)a56(3+t)2+ta312(4+t)(3+t)a45!Γ(4+t)Γ(3+t)32Γ(6+t)a56!Γ(5+t)Γ(3+t)24!Γ(7+t)a64!Γ(2+t)(4+t)2Γ(4+t)a45!Γ(3+t)Γ(4+t)22Γ(6+t)a56!Γ(4+t)3!Γ(7+t)a67!Γ(5+t)Γ(4+t)83Γ(8+t)a75!Γ(2+t)(5+t)6Γ(5+t)a56!Γ(3+t)Γ(5+t)26Γ(7+t)a67!Γ(4+t)Γ(5+t)63Γ(8+t)a78!Γ(5+t)4!Γ(9+t)a8]. (2.4)

    Note that the matrix of Hankel operator Hφ is independent of co-analytic term j=1bj¯zj of the symbol function φ. By a direct calculation, the matrix representation of its adjoint Hφ is of the following form:

    Hφ=[22+t¯a26(3+t)2+t¯a34!Γ(2+t)(4+t)2Γ(4+t)¯a45!Γ(2+t)(5+t)6Γ(5+t)¯a53(3+t)2+t¯a312(4+t)(3+t)¯a45!Γ(3+t)Γ(4+t)32Γ(6+t)¯a56!Γ(3+t)Γ(5+t)26Γ(7+t)¯a64!Γ(4+t)Γ(2+t)32Γ(5+t)¯a45!Γ(4+t)Γ(3+t)3Γ(6+t)¯a56!Γ(4+t)3!Γ(7+t)¯a67!Γ(4+t)Γ(5+t)63Γ(8+t)¯a75!Γ(5+t)Γ(2+t)24!Γ(6+t)¯a56!Γ(5+t)Γ(3+t)24!Γ(7+t)¯a67!Γ(5+t)Γ(4+t)83Γ(8+t)¯a78!Γ(5+t)4!Γ(9+t)¯a8].

    Observe that Hφ=Hˆφ for ˆφ(z)=i=1¯aizi+j=1¯bj¯zj (each bj can be zero), where Hˆφ denotes the transpose of the matrix representation of Hˆφ.

    Next we find the matrix representation of H-Toeplitz operator Sφ. Clearly, it follows from (1.3), (1.4), (2.1) and (2.3) that

    Sφ(e2n),emt=Tφ(en),emt={mm!Γ(n+t+1)nn!Γ(m+t+1)amn,if mn,mn!Γ(m+t+1)nm!Γ(n+t+1)bnm,if m<n, (2.5)

    and

    Sφ(e2n1),emt=Hφ(en),emt=(n+m)!mΓ(n+t+1)Γ(m+t+1)nn!m!Γ(m+n+t+1)am+n, (2.6)

    where m, nN. Thus, the matrix representation of Sφ with respect to the orthonormal basis {ek}k=1 of Dt is given by

    Sφ=[22+ta2a03(3+t)2+ta312+tb16(3+t)2+ta322+ta112(4+t)(3+t)a4a04!Γ(2+t)(4+t)2Γ(4+t)a432(3+t)(2+t)a25!Γ(3+t)Γ(4+t)22Γ(6+t)a532(3+t)a15!Γ(2+t)(5+t)6Γ(5+t)a546Γ(2+t)Γ(5+t)a36!Γ(3+t)Γ(5+t)26Γ(7+t)a626(4+t)(3+t)a2], (2.7)

    and the matrix representation of its adjoint is given by

    Sφ=[22+t¯a26(3+t)2+t¯a34!Γ(2+t)(4+t)2Γ(4+t)¯a45!Γ(2+t)(5+t)6Γ(5+t)¯a5¯a022+t¯a132(3+t)(2+t)¯a246Γ(2+t)Γ(5+t)¯a33(3+t)2+t¯a312(4+t)(3+t)¯a45!Γ(3+t)Γ(4+t)22Γ(6+t)¯a56!Γ(3+t)Γ(5+t)26Γ(7+t)¯a612+t¯b1¯a032(3+t)¯a126(4+t)(3+t)¯a2].

    Remark 2.1. It can be seen from (2.2), (2.4) and (2.7) that the matrix representations of the Toeplitz operator Tφ and the Hankel operator Hφ can be obtained by deleting every odd and even column of the H-Toeplitz operator Sφ, respectively. The matrix of Sφ is an upper triangular matrix if the symbol φM is co-analytic. However, it cannot be lower triangular. Additionally, it is worthwhile to mention that an n×n Dirichlet type H-Toeplitz matrix defined as follows has 2n degree of freedom rather than n2. Consequently, for large n, it is relatively easy to solve the system of linear equations when the coefficient matrix is a Dirichlet type H-Toeplitz matrix.

    Definition 2.1. Let φ(z)=i=0aizi+j=1bj¯zjM with zD and ai,bjC. We define an infinite matrix (cm,n) as a Dirichlet type H-Toeplitz matrix if its (m,n)-th entry satisfies the following relation:

    cm,n={mm!Γ(l+t+1)ll!Γ(m+t+1)aml,ifn=2landml,ml!Γ(m+t+1)lm!Γ(l+t+1)blm,ifn=2landm<l,(l+m)!mΓ(l+t+1)Γ(m+t+1)ll!m!Γ(m+l+t+1)am+l,ifn=2l1,

    where m, n and l are all in N.

    This section is mainly concerned with the compactness of H-Toeplitz operators. It is well-known that compact operators behave like operators on finite-dimensional vector spaces and play a fundamental role in operator theory.

    The following proposition follows easily from the definition of the H-Toeplitz operator Sφ.

    Proposition 3.1. Suppose that a,bC and φ,ψM. Then

    (a) Saφ+bψ=aSφ+bSψ;

    (b) Sφ is a bounded linear operator on Dt with Sφtφz+φ.

    Let L2a(dAt) be the weighted Bergman space on D, which consists of all analytic functions in L2(D,dAt). We use the notations 2 and ,2 to represent the norm and inner product in L2a(dAt), respectively.

    Similar to the proof of [15, Lemma 12], we have the following result.

    Lemma 3.1. The identity operator I from Dt into L2a(dAt) defined by If=f for any fDt is compact.

    From Lemma 3.1, we conclude that for any sequence {fk}k converging weakly to 0 in Dt (write fkw0 for short), the sequence {fk2}k converges to 0 as k.

    The next lemma will be utilized in the compactness of H-Toeplitz operators.

    Lemma 3.2. For any φM, SφKPhM¯φ is compact on Dt, where Ph is the orthogonal projection from L2,1t onto Dh.

    Proof. For any f,gDt, we have

    (SφKPhM¯φ)(f),gt=f,Sφ(g)tKPhM¯φ(f),gt=f,PMφK(g)tPhM¯φ(f),K(g)t=f,φK(g)t¯φf,K(g)t=fz,K(g)φz2+fz,φ(K(g))z2f¯φz,(K(g))z2¯φfz,(K(g))z2=fz,φzK(g)2f,φ¯z(K(g))z2.

    Since Dt is contained in L2a(dAt), it follows that

    |(SφKPhM¯φ)(f),gt||fz,φzK(g)2|+|f,φ¯z(K(g))z2|fz2φzK(g)2+f2φ¯z(K(g))z2φM(ftK(g)2+f2K(g)t)φM(ftg2+f2gt),

    where

    φM=esssupzDmax{|φ|,|φz|,|φ¯z|}.

    Let {fk}k be any sequence converging weakly to 0 in Dt. Taking f=fk and g=(SφKPhM¯φ)fk in the above, we obtain

    (SφKPhM¯φ)fk2tφM[fkt(SφKPhM¯φ)fk2+fk2(SφKPhM¯φ)fkt].

    Note that (SφKPhM¯φ)fkw0 in Dt as k. It follows from Lemma 3.1 that fk2 and (SφKPhM¯φ)fk20 as k. Therefore,

    (SφKPhM¯φ)fkt0

    as k, which implies that SφKPhM¯φ is compact on Dt. This completes the proof of the lemma.

    Remark 3.1. Let ˇPh denote the orthogonal projection from L2(D,dA) onto the harmonic Bergman space L2h. We have known that the adjoint Sφ of an H-Toeplitz operator Sφ is equal to KM¯φ (resp., KˇPhM¯φ) on the Hardy space [5] (resp., Bergman space [6]). However, there is no analogues identity on the Dirichlet type space. The situation is different from that of Hardy space and Bergman space.

    Lemma 3.3. [16, Proposition 7.2] If φL1(D,dAt) is harmonic, then ˇTφ is compact on L2a(dAt) if and only if φ=0.

    We apply the above results to show the compactness of the H-Toeplitz operator on Dt.

    Theorem 3.1. Suppose t>1 and φM is co-analytic. Then, Sφ is a compact operator on Dt if and only if φ=0.

    Proof. If φ=0, then Sφ is trivially compact on Dt.

    Conversely, assume that Sφ is compact on Dt. We are going to show that φ=0. Otherwise, if φ0, then ˇTφ is not compact on L2a(dAt) by Lemma 3.3. Hence, there is a sequence {fk}kL2a(dAt), fk2=1, fkw0 such that ˇTφ(fk)20 as k. Thus, φfk20, that is,

    D|φ|2|fk|2dAt0

    as k.

    Note that Sφ is compact on Dt, so is Sφ by [16, Theorem 1.16]. We deduce that KPhM¯φ is also compact on Dt by Lemma 3.2. This implies that SφKPhM¯φ is compact on Dt. Let

    Fk:=z0fk(w)dw,

    then Fkw0 in Dt and Fkt=1. So, SφKPhM¯φ(Fk)t0, that is,

    |φ|2Fkt0

    as k. Thus, we have

    ||φ|2Fk,Fkt||φ|2FktFkt=|φ|2Fkt0

    as k. However,

    |φ|2Fk,Fkt=(|φ|2Fk)z,Fkz2=Fk|φ|2z,Fkz2+|φ|2Fkz,Fkz2=φFk¯φz,fk2+|φ|2fk,fk20,

    since

    |φFk¯φz,fk2|φ2MFk2fkt0

    and

    |φ|2fk,fk2=D|φ|2|fk|2dAt0

    as k. This contradiction shows that φ=0. This ends the proof of Theorem 3.1.

    Lemma 3.4. Suppose t>1 and z, wD. The dilation operator K:DtDh satisfies

    K(Ktz)(w)=k=1Γ(2k+t+1)Γ(k+t+1)kΓ(t+2)2(2k)!k!¯z2kwk+k=1Γ(2k+t)Γ(k+t+1)Γ(t+2)kk!(2k1)(2k1)!¯z2k1¯wk.

    Proof. For z,wD, by (1.1) and the definition of K, we obtain

    K(Ktz)(w)=k=1¯e2k(z)K(e2k)(w)+k=1¯e2k1(z)K(e2k1)(w)=k=1¯e2k(z)ek(w)+k=1¯e2k1(z)¯ek(w)=k=1Γ(2k+t+1)Γ(k+t+1)kΓ(t+2)2k!(2k)!¯z2kwk+k=1Γ(2k+t)Γ(k+t+1)Γ(t+2)kk!(2k1)(2k1)!¯z2k1¯wk.

    This finishes the proof of the lemma.

    For t>1 and z, wD, denote

    htz(w):=K(ktz)(w),

    where

    ktz(w)=Ktz(w)Ktzt

    is the normalized reproducing kernel of Dt. Let D be the boundary of the unit disk D. Next, we will discuss the boundary behavior of htz.

    Lemma 3.5. For t0 and zD, we have htz0 as zD.

    Proof. For t>0, by the Stirling's formula, we have

    Ktz2t=Ktz,Ktzt=Ktz(z)=k=1Γ(k+t+1)kk!Γ(t+2)|z|2kk=1Γ(k+t)k!Γ(t)|z|2k=1(1|z|2)t, (3.1)

    where the notation "∼" is used to denote that the ratio of the two sides tends to 1 as k.

    For t=0, we have

    Ktz2t=Ktz,Ktzt=Ktz(z)=k=1|z|2kk=log11|z|2.

    We conclude that

    htz=K(ktz)=K(Ktz)Ktzt0

    as zD.

    Proposition 3.2. Suppose t0 and φM. Then, Sφ is not bounded below on Dt.

    Proof. Given zD, by the dominated convergence theorem, Lemma 3.5, and (3.1), we have

    Sφ(ktz)2t=PMφ(htz)2tφhtz2t=|DφhtzdAt|2+D(|(φhtz)w|2+|(φhtz)¯w|2)dAt=|DφhtzdAt|2+D|htz(w)φ(w)w+φ(w)Ktztk=1Γ(2k+t+1)Γ(k+t+1)Γ(t+2)2k!(2k)!¯z2kwk1|2dAt(w)+D|htz(w)φ(w)¯w+φ(w)Ktztk=1kΓ(2k+t)Γ(k+t+1)Γ(t+2)k!(2k1)(2k1)!¯z2k1¯wk1|2dAt(w)0

    as zD, from which we deduce that Sφ is not bounded below on Dt.

    Recall that for a bounded linear operator T defined on a Hilbert space, the approximated point spectrum of operator T is defined as the set

    σap(T)={λC:TλIis not bounded below}.

    See [17]. Thus, for the H-Toeplitz operator Sφ defined on Dt, Proposition 2 implies that 0σap(Sφ) for t0 and φM.

    At the end of this section, we explore the question of when an H-Toeplitz operator is Fredholm. For more details concerning Fredholm operators; see [18, CHAPTER XI § 2].

    The subsequent proposition illustrates the property of the Fredholm operator on Dt from the perspective of weakly convergent nets.

    Proposition 3.3. Suppose t>1. If T is a Fredholm operator on Dt, then, there is no {hz}zD of unit vectors in Dt such that hzw0 as zD and limThzt=0.

    Proof. Suppose there is {hz}zD of unit vectors in Dt such that hzw0 as zD and limThzt=0. We shall provide a proof by contradiction. Since T is Fredholm, there exists a bounded operator B and a compact operator E on Dt such that BT=I+E. Then,

    |IBThzt|=|hztBThzt|Ehzt0

    as zD by the compactness of E. This implies that BThzt1 as zD, which contradicts to the assumption limThzt=0.

    Theorem 3.2. Suppose t0 and φM. Then, there is no nonzero H-Toeplitz operator Sφ on Dt which is Fredholm.

    Proof. Assume that the H-Toeplitz operator Sφ is Fredholm on Dt for some φM. Take the net {ktz}zD of normalized kernels on Dt. Then, ktz0 weakly and also Sφktzt0 as zD by the proof of Proposition 3.2. This contradicts the fact that Sφ is a Fredholm operator by Proposition 3.3. It follows that Sφ is a Fredholm operator on Dt if and only if φ=0 in M.

    Recall that the essential spectrum of a bounded linear operator T is given by

    σe(T)={λC:TλI is not Fredholm}.

    For t0 and φM, we derive that the essential spectrum of H-Toeplitz operator Sφ on Dt is nonempty by the above theorem, since 0σe(Sφ) in this case.

    In this section, we investigate some algebraic properties of H-Toeplitz operators on Dt, which include self-adjointness, diagonality, co-isometry, partial isometry as well as commutativity.

    Let

    H={φM:φ(z)=i=0aizi+j=1bj¯zj, zD and ai,bjC}.

    In the next theorem, we develop a new method to demonstrate that a nonzero H-Toeplitz operator Sφ induced by φH can never be a self-adjoint operator on Dt.

    Theorem 4.1. Let t>1 and φH. Then the H-Toeplitz operator Sφ is self-adjoint on Dt if and only if φ=0.

    Proof. Let φH defined by φ(z)=i=0aizi+j=1bj¯zj, where zD and ai,bjC. The backward implication is trivial. Now, suppose that Sφ is self-adjoint. Then (SφSφ)f=0 for any fDt. Taking f(z)=e1(z)=z, we apply the reproducing property of Ktz, Lemma 3.4, and (1.4) to get

     Sφ(e1)(z)=Sφ(e1),Ktzt=e1,Sφ(Ktz)t=e1,PMφK(Ktz)t=e1,φK(Ktz)t=D¯(φK(Ktz))w(w)dAt(w)=D¯K(Ktz)(w)¯φw(w)dAt(w)+D¯φ(w)¯(K(Ktz))w(w)dAt(w)=D(i=1i¯ai¯wi1)(k=1Γ(2k+t+1)Γ(k+t+1)kΓ(t+2)2(2k)!k!z2k¯wk+k=1Γ(2k+t)Γ(k+t+1)Γ(t+2)kk!(2k1)(2k1)!z2k1wk)dAt(w)+D(i=0¯ai¯wi+j=1¯bjwj)(k=1Γ(2k+t+1)Γ(k+t+1)Γ(t+2)2(2k)!k!z2k¯wk1)dAt(w)=k=1(k+1)(k1)!Γ(2k+t)Γ(k+t+1)¯ak+1Γ(k+t+2)(2k1)(2k1)!z2k1+t+2¯a02z2+k=1k!Γ(2k+t+3)¯bk2(k+1)(2k+2)!Γ(k+t+2)z2k+2,

    and

    Sφ(e1)(z)=Hφ(e1)(z)=PMφJ(e1)(z)=P(φ¯e1)(z)=φ¯e1,Ktzt=D(φ¯e1)w(w)¯Ktzw(w)dAt(w)=D(i=1iaiwi1¯w)(k=1Γ(k+t+1)k!Γ(t+2)zk¯wk1)dAt(w)=k=1(k+1)ak+1k+t+1zk.

    Therefore,

    0= (SφSφ)(e1)(z)= (t+2¯a023a3t+3)z2+k=1((k+1)(k1)!Γ(2k+t)Γ(k+t+1)¯ak+1Γ(k+t+2)(2k1)(2k1)!2ka2k2k+t)z2k1+k=1(k!Γ(2k+t+3)¯bk2(k+1)(2k+2)!Γ(k+t+2)(2k+3)a2k+32k+t+3)z2k+2.

    This implies that

    ¯a0=6a3t+2(t+3), (4.1)
    ¯ak+1=2kΓ(k+t+2)(2k1)(2k1)!(k+1)(2k+t)(k1)!Γ(2k+t)Γ(k+t+1)a2k,kN, (4.2)

    and

    ¯bk=2(k+1)(2k+3)!Γ(k+t+2)(2k+t+3)k!Γ(2k+t+3)a2k+3,kN. (4.3)

    Taking f(z)=e2(z)=t+22z2 and by the reproducing property of Ktz, Lemma 3.4, and (1.3), we deduce that

     Sφ(e2)(z)=Sφ(e2),Ktzt=e2,Sφ(Ktz)t=e2,PMφK(Ktz)t=e2,φK(Ktz)t=De2w(w)¯(φK(Ktz))w(w)dAt(w)=t+2Dw¯φw(w)¯K(Ktz)(w)dAt(w)+t+2Dw¯φ(w)¯(K(Ktz))w(w)dAt(w)=t+2Dw(i=1i¯ai¯wi1)(k=1Γ(2k+t+1)Γ(k+t+1)kΓ(t+2)2(2k)!k!z2k¯wk+k=1Γ(2k+t)Γ(k+t+1)Γ(t+2)kk!(2k1)(2k1)!z2k1wk)dAt(w)+t+2Dw(i=0¯ai¯wi+j=1¯bjwj)×(k=1Γ(2k+t+1)Γ(k+t+1)Γ(t+2)2(2k)!k!z2k¯wk1)dAt(w)=¯a1z2+k=1(k+1)(k+2)k!Γ(2k+t)Γ(k+t+1)¯ak+2Γ(k+t+3)k(2k1)(2k1)!z2k1+Γ(t+5)¯a046Γ(t+2)z4+k=1(t+2)Γ(2k+t+5)¯bk(k+2)2(2k+4)!z2(k+2),

    and

    Sφ(e2)(z)=Tφ(e1)(z)=PMφ(e1)(z)=φe1,Ktzt=D(φe1)w(w)¯Ktzw(w)dAt(w)=D(i=1iai1wi1+j=1bj¯wj)(k=1Γ(k+t+1)k!Γ(t+2)zk¯wk1)dAt(w)=k=1ak1zk.

    Thus, we obtain

    0= (SφSφ)(e2)(z)= (¯a1a1)z2+(Γ(t+5)¯a046Γ(t+2)a3)z4+k=1((k+1)(k+2)k!Γ(2k+t)Γ(k+t+1)¯ak+2Γ(k+t+3)k(2k1)(2k1)!a2k2)z2k1+k=1((t+2)Γ(2k+t+5)¯bk(k+2)2(2k+4)!a2k+3)z2(k+2).

    This implies that

    ¯a1=a1, (4.4)
    ¯a0=46Γ(t+2)Γ(t+5)a3, (4.5)
    ¯ak+2=Γ(k+t+3)k(2k1)(2k1)!(k+1)(k+2)k!Γ(2k+t)Γ(k+t+1)a2k2,kN, (4.6)

    and

    ¯bk=(k+2)2(2k+4)!(t+2)Γ(2k+t+5)a2k+3,kN. (4.7)

    By (4.1) and (4.5), we get ¯a0=a3=0. This together with (4.2), (4.3), (4.6) and (4.7) further implies that

    ai=0,bj=0,for any i{0}N{1} and jN. (4.8)

    It remains to show a1=0. Taking

    f(z)=e3(z)=(t+2)(t+3)32z3,

    a similar argument shows that

     Sφ(e3)(z)=Sφ(e3),Ktzt=e3,Sφ(Kz)t=e3,PMφK(Ktz)t=e3,φK(Ktz)t=De3w(w)¯(φK(Ktz))w(w)dAt(w)=(t+2)(t+3)2Dw2¯φw(w)¯K(Ktz)(w)dAt(w)+(t+2)(t+3)2Dw2¯φ(w)¯(K(Ktz))w(w)dA(w)=(t+2)(t+3)2Dw2(i=1i¯ai¯wi1)(k=1Γ(2k+t+1)Γ(k+t+1)kΓ(t+2)2(2k)!k!z2k¯wk+k=1Γ(2k+t)Γ(k+t+1)Γ(t+2)kk!(2k1)(2k1)!z2k1wk)dAt(w)+(t+2)(t+3)2Dw2(i=0¯ai¯wi+j=1¯bjwj)×(k=1Γ(2k+t+1)Γ(k+t+1)Γ(t+2)2(2k)!k!z2k¯wk1)dAt(w)=3(t+2)(t+4)¯a18z4+,

    and

    Sφ(e3)(z)=Hφ(e2)(z)=PMφJ(e2)(z)=P(φ¯e2)(z)=φ¯e2,Ktzt=D(φ¯e2)w(w)¯Ktzw(w)dAt(w)=D(i=1t+2iai2wi1¯w2)(k=1Γ(k+t+1)k!Γ(t+2)zk¯wk1)dAt(w)=k=1(k+1)(k+2)t+2ak+22(k+t+2)(k+t+1)zk.

    Hence, we obtain

    0= (SφSφ)(e3)(z)=(3(t+2)(t+4)¯a1815t+2a6(t+6)(t+5))z4+,

    which implies

    a1=403(t+6)(t+5)t+4¯a6=0.

    This together with (4.8) shows that φ=0, completing the proof of the theorem.

    Recall that an operator T is diagonal on the Dirichlet type space Dt if and only if Tei,ejt=0 for all positive integers ij.

    Theorem 4.2. Let t>1 and φH. Then, Sφ is a diagonal operator on Dt if and only if φ=0.

    Proof. Let φH defined by φ(z)=i=0aizi+j=1bj¯zj, where zD and ai,bjC. The forward implication is trivial. Suppose conversely that Sφ is a diagonal operator on Dt. Then, for m, nN such that mn, we have Sφ(en),emt=0, where {en}n=1 is an orthonormal basis of Dt. Then, the following two cases arise. If n=2k for some kN, by (2.5), we get

    Sφ(e2k),emt=Tφ(ek),emt={mm!Γ(k+t+1)kk!Γ(m+t+1)amk,if mk,mk!Γ(m+t+1)km!Γ(k+t+1)bkm,if k>m.

    If n=2k1 for some kN, by (2.6), we obtain

    Sφ(e2k1),emt=Hφ(ek),emt=(k+m)!mΓ(k+t+1)Γ(m+t+1)kk!m!Γ(m+k+t+1)am+k.

    The above cases indicate that ai=0 and bj=0 for all i0, j1. Hence, φ=0.

    Let ˇP be the Bergman projection from L2(D,dAt) onto the weighted Bergman space L2a(dAt). For any φL(D), the Toeplitz operator ˇTφ on L2a(dAt) is defined by

    ˇTφ=ˇPMφ.

    Note that the adjoint of ˇTφ satisfies ˇTφ=ˇT¯φ.

    Let

    ˇek(z)=Γ(k+t+2)k!Γ(t+2)zk,zD.

    Then, {ˇek}k=0 forms an orthonormal basis of L2a(dAt). Define an operator U:DtL2a(dAt) by

    U(ek)=ˇek1

    and linearly extending it to Dt. Then, U is a unitary operator such that

    Uf=f

    for each fDt.

    In the next result, we see that a Toeplitz operator induced by a co-analytic symbol in M on the Dirichlet type space Dt is unitarily equivalent to that on the weighted Bergman space L2a(dAt).

    Lemma 4.1. Let φM be a co-analytic function. Then, Tφ=UˇTφU.

    Proof. Recall that ,2 denotes the inner product in L2a(dAt). Let φM be a co-analytic function. For any f,gDt, a direct calculation gives

    Tφf,gt=PMφf,gt=φf,gt=(φf)z,gz2=fφz,gz2+φfz,gz2=ˇTφUf,Ug2=UˇTφUf,gt.

    This gives the desired result.

    In the next theorem, we apply Lemma 4.1 to establish a criterion of co-isometry for the H-Toeplitz operator on Dt.

    Theorem 4.3. Suppose t>1 and φM is a nonzero, co-analytic function on D. Then, Sφ is a co-isometry on Dt if and only if φ=1 on D.

    Proof. Let φM be a nonzero, co-analytic function on D. Then, by Lemma 4.1,

    SφSφ(zk)=(PMφK)(KMφP)(zk)=PMφTφ(zk)=PMφ(UˇTφU)(zk)=PMφUˇT¯φU(zk)=PMφU(k¯φzk1)=PMφ(¯φzk)=T|φ|2(zk)

    for arbitrary kN. Since the polynomials are dense in Dt, it follows that

    SφSφ=T|φ|2. (4.9)

    Assume that Sφ is a co-isometry on Dt, that is, SφSφ=I. Thus, by (4.9), we have T1|φ|2=0. Since 1¯φ is analytic, it follows that

    T1φT1¯φ=0.

    Similar to [15, Corollary 10], we conclude that either 1φ=0 or 1¯φ=0, which gives that φ=1 on D.

    Conversely, if φ=1 on D, then SφSφ=T1=I by (4.9), which means that Sφ is a co-isometry on Dt. This completes the proof of the theorem.

    Let B(Dt) denote the algebra consisting of all bounded linear operators on the Dirichlet type space Dt. We are going to show that the map φSφ is one-to-one if the domain is H, which is given in the following.

    Lemma 4.2. The map γ:HB(Dt) defined by γ(φ)=Sφ is one-to-one.

    Proof. Let φ,ψH, which are defined by

    φ(z)=i=0aizi+j=1bj¯zj,zD, ai,bjC,

    and

    ψ(z)=i=0aizi+j=1bj¯zj,zD, ai,bjC,

    respectively. If Sφ=Sψ, then Sφψ(ek)=0 for all kN. In particular, Sφψ(e2)=0, that is, PMφψK(e2)=0. More precisely,

    P(i=0(aiai)zi+1+j=1(bjbj)¯zjz)=0.

    Applying Lemma 2.1, we derive that

    i=0(aiai)zi+1=0.

    Therefore, ai=ai for all i0. Moreover, Sφψ(e4)=0, thus we obtain

    P(i=0(aiai)zi+2+j=1(bjbj)¯zjz2)=0.

    Using Lemma 2.1 again, we get

    2t+2(b1b1)z=0,

    hence b1=b1. Continuing the above process for e6, e8, e10 and so on, we obtain bj=bj for all j2, and then φ=ψ. This proves the desired result.

    In the next result, we give a necessary and sufficient condition for an H-Toeplitz operator to be a partial isometry on the Dirichlet type space Dt.

    Theorem 4.4. Suppose t>1 and φM is a nonzero, co-analytic function on D. Then Sφ is a partial isometry on Dt if and only if φ=1 on D.

    Proof. If φ=1 on D, then Sφ is a co-isometry by Theorem 4.3. Thus, Sφ is a partial isometry.

    Conversely, suppose Sφ is a partial isometry on Dt. Then, by [17, Theorem 2.3.3], we have SφSφSφ=Sφ. In view of (4.9), we get

    T|φ|2Sφ=Sφ,

    or equivalently,

    T1|φ|2Sφ=0.

    Since φ0, we have Sφ0 by Lemma 4.2. Thus, T1|φ|2=0. The desired result is then obtained by proceeding as in the proof of Lemma 4.3.

    As an operator on the Hilbert space, Sφ is a partial isometry if and only if Sφ is a partial isometry for φM; see [19, Proposition 4.38]. Thus, combining Theorem 4.3 with Theorem 4.4, we get the following corollary.

    Corollary 4.1. Suppose t>1 and φM is a nonzero, co-analytic function on D. Then, the following statements are equivalent:

    (a) Sφ is a isometry on Dt.

    (b) Sφ is a partial isometry on Dt.

    (c) φ=1 on D.

    For any fixed positive integer M, define

    HM=span{zl,1l2M}.

    Then HM is a closed subspace of the Dirichlet type space Dt. In fact, the following theorem reveals that it is the kernel of H-Toeplitz operator with some co-analytic symbol.

    Theorem 4.5. Suppose t>1 and M is a fixed positive integer. Let φ(z)=l=Mal¯zlM. Then, the subspace HM of Dt is the kernel of the H-Toeplitz operator Sφ.

    Proof. Consider positive integers i,j satisfying Mi< and 1j2M. If j=2k for some kN, then by Lemma 2.1

    S¯zi(zj)=PM¯ziK(z2k)={2k!(2k)!Γ(ki+t+1)Γ(2k+t+1)Γ(k+t+1)(ki)!zki,if k>i,0,if ki.

    Note that Mi< and 1kM, then S¯zi(zj) is equal to 0 in the case of j=2k. If j=2k1 for some kN, similarly, we get

    S¯zi(zj)=PM¯ziK(z2k1)=(2k1)(2k1)!Γ(k+t+1)kk!Γ(2k+t)P(¯zi+k)=0.

    Hence, S¯zi(zj)=0 for the positive integers i, j satisfying Mi< and 1j2M. Now, for φ(z)=l=Mal¯zlM, by Proposition 1(a) and a limiting argument, we see that

    Sφ(zj)=l=MalS¯zl(zj).

    Hence, we have Sφ(zj)=0 for all 1j2M. Therefore, we conclude that HM is the kernel of Sφ.

    Taking the symbol as a polynomial harmonic function for the H-Toeplitz operator, we can prove its kernel is infinite-dimensional.

    Theorem 4.6. If ψM is a polynomial harmonic function, then dimkerSψ=.

    Proof. Observe that if ψ is a co-analytic function in M, then Sψ(zf(z2))=0 for suitable choice of function fDt. This implies that kerSψ{0}. Now, suppose that M, NN are arbitrary given integers, set ψ(z)=Ns=0aszs+Mm=1bm¯zm. Let α=max{M,N} and choose f(z)=i=αciz2i+1Dt. We can obtain

    Sψf(z)=PMψK(i=αciz2i+1)=PMψ(i=α(2i+1)(2i+1)!Γ(i+t+2)(i+1)(i+1)!Γ(2i+t+2)ci¯zi+1)=P((Ns=0aszs+Mm=1bm¯zm)(i=α(2i+1)(2i+1)!Γ(i+t+2)(i+1)(i+1)!Γ(2i+t+2)ci¯zi+1))=P((Ns=0aszs)(i=α(2i+1)(2i+1)!Γ(i+t+2)(i+1)(i+1)!Γ(2i+t+2)ci¯zi+1))=0,

    where the last equality follows from Lemma 2.1. Similarly, for all nN, Sψ(z2nf(z))=0. Hence, if a nonzero function gkerSψ, then nk=1λkz2kgkerSψ for nN and λkC. In particular, the set {z2ng:nN} is a linear independent set. In fact, suppose nk=1λkz2kg(z)=0 but g0, then nk=1λkz2k vanishes on a positive measure set so that λk=0 for k=1,2,,n. This shows that {z2g,z4g,,z2ng} is linear independent. This is true for all nN and all such functions in kerSψ, so kerSψ is infinite dimensional.

    It is well-known that the C-algebra generated by self-adjoint operators is abelian and hence its algebraic structure is primitive. As examples of non-self-adjoint operators, the C-algebra generated by H-Toeplitz operators is complicated. Therefore, it is of great importance to study the condition for commutativity of H-Toeplitz operators.

    The subsequent theorem characterizes when two H-Toeplitz operators with analytic symbols commute on Dt under certain conditions.

    Theorem 4.7. Suppose t>1. Let φ=i=1aizi and ψ=j=1bjzj in M, where zD, ai, bj0 for all i, jN and b1a1=b2i+1a2i+1 for all iN. If bi+kai+kb2ia2i for all i, kN, then Sφ and Sψ commute on Dt if and only if φ and ψ are linearly dependent.

    Proof. We show the forward implication only because the reverse implication is trivial. Suppose SφSψ=SψSφ. In particular, SφSψ(z)=SψSφ(z), that is,

    PMφKP(j=1bjzj¯z)=PMψKP(i=1aizi¯z).

    Hence, by Lemma 2.1,

    PMφK(j=1(j+1)bj+1j+1+tzj)=PMψK(i=1(i+1)ai+1i+1+tzi).

    Using Lemma 2.1 again,

    k=1i=1(2k+1)2(2k)!Γ(k+t+1)(2k+1+t)k!Γ(2k+t+1)b2k+1aizi+k+k=1i>k2k(2k1)(2k1)!Γ(k+t+1)(2k+t)kk!Γ(2k+t)b2kaizik=k=1j=1(2k+1)2(2k)!Γ(k+t+1)(2k+1+t)k!Γ(2k+t+1)a2k+1bjzj+k+k=1j>k2k(2k1)(2k1)!Γ(k+t+1)(2k+t)kk!Γ(2k+t)a2kbjzjk.

    Then, comparing the coefficients of z in the above equation, we get

    k=12k(2k1)(2k1)!Γ(k+t+1)(2k+t)kk!Γ(2k+t)(b2kak+1a2kbk+1)z=0,

    which implies that bi+1ai+1=b2ia2i for each iN by the hypothesis bi+kai+kb2ia2i. Similarly, comparing the coefficients of z2, we get

    34Γ(t+2)(3+t)Γ(t+3)(b3a1a3b1)z2+k=12k(2k1)(2k1)!Γ(k+t+1)(2k+t)kk!Γ(2k+t)(b2kak+2a2kbk+2)z2=0,

    which means that bi+2ai+2=b2ia2i for each iN by the hypothesis bi+kai+kb2ia2i again. Continuing in this fashion, we obtain that bi+kai+k=b2a2 for each i, kN. Therefore, bi=λai for each integer i1, where λ=b2a2 is a constant. It follows that ψ=λφ.

    More generally, we use the same trick in Theorem 4.7 to obtain an equivalent condition for the commutativity of H-Toeplitz operators with polynomial harmonic symbols.

    Theorem 4.8. Suppose t>1. Let φ=i=1aizi+j=1bj¯zj and ψ=m=1cmzm+n=1dn¯zn in M, where ai, bj, cm, dn0 for i, j, m, dN and c1a1=c2i+1a2i+1 for all iN. If ai+kci+ka2ic2i and bjdja2(j+k)+1c2(j+k)+1 for all i, j, kN, then Sφ and Sψ commute on Dt if and only if φ and ψ are linearly dependent.

    In this research, we conduct a study of H-Toeplitz operators on the Dirichlet type space Dt. Specifically, the compactness, self-adjointness, diagonality, co-isometry, partial isometry and commutativity of H-Toeplitz operators on Dt are characterized.

    Peiying Huang and Yiyuan Zhang: Conceptualization, Formal analysis, Methodology, Writing-original draft, Validation, Writing-review & editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515111187).

    The authors declare that they have no competing interests.



    [1] D. Girela, J. A. Pelaez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241 (2006), 334–358. https://doi.org/10.1016/j.jfa.2006.04.025 doi: 10.1016/j.jfa.2006.04.025
    [2] L. He, Y. F. Li, Y. Y. Zhang, The convergence of Galerkin-Petrov methods for Dirichlet projections, Ann. Funct. Anal., 14 (2023), 1–16. https://doi.org/10.1007/s43034-023-00284-y doi: 10.1007/s43034-023-00284-y
    [3] J. Pau, J. A. Peláez, On the zeros of functions in the Dirichlet-type spaces, Trans. Amer. Math. Soc., 363 (2011), 1981–2002. https://doi.org/10.1090/S0002-9947-2010-05108-6 doi: 10.1090/S0002-9947-2010-05108-6
    [4] R. Rochberg, Z. J. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math., 37 (1993), 101–122.
    [5] S. C. Arora, S. Paliwal, On H-Toeplitz operators, Bull. Pure Appl. Math., 1 (2007), 141–154.
    [6] A. Gupta, S. K. Singh, H-Toeplitz operators on the Bergman space, Bull. Korean Math. Soc., 58 (2021), 327–347. https://doi.org/10.4134/BKMS.b200260 doi: 10.4134/BKMS.b200260
    [7] S. Kim, J. Lee, Contractivity and expansivity of H-Toeplitz operators on the Bergman spaces, AIMS Math., 7 (2022), 13927–13944. https://doi.org/10.3934/math.2022769 doi: 10.3934/math.2022769
    [8] J. J. Liang, L. L. Lai, Y. L. Zhao, Y. Chen, Commuting H-Toeplitz operators with quasi-homogeneous symbols, AIMS Math., 7 (2022), 7898–7908. https://doi.org/10.3934/math.2022442 doi: 10.3934/math.2022442
    [9] Q. Ding, Y. Chen, Product of H-Toeplitz operator and Toeplitz operator on the Bergman space, AIMS Math., 8 (2023), 20790–20801. https://doi.org/10.3934/math.20231059 doi: 10.3934/math.20231059
    [10] Y. J. Lee, K. H. Zhu, Sums of products of Toeplitz and Hankel operators on the Dirichlet space, Integr. Equ. Oper. Theory, 71 (2011), 275–302. https://doi.org/10.1007/s00020-011-1901-4 doi: 10.1007/s00020-011-1901-4
    [11] Z. J. Wu, Hankel and Toeplitz operators on Dirichlet spaces, Integr. Equ. Oper. Theory, 15 (1992), 503–525. https://doi.org/10.1007/BF01200333 doi: 10.1007/BF01200333
    [12] G. F. Cao, Fredholm properties of Toeplitz operators on Dirichlet spaces, Pacific J. Math., 188 (1999), 209–223. https://doi.org/10.2140/pjm.1999.188.209 doi: 10.2140/pjm.1999.188.209
    [13] G. F. Cao, Toeplitz operators and algebras on Dirichlet spaces, Chin. Ann. Math., 23 (2002), 385–396. https://doi.org/10.1142/S0252959902000353 doi: 10.1142/S0252959902000353
    [14] G. F. Cao, C. Y. Zhong, Some problems of Toeplitz operators on Dirichlet spaces, Acta. Anal. Funct. Appl., 2 (2000), 289–297.
    [15] Y. J. Lee, Algebraic properties of Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl., 329 (2007), 1316–1329. https://doi.org/10.1016/j.jmaa.2006.07.041 doi: 10.1016/j.jmaa.2006.07.041
    [16] K. H. Zhu, Operator theory in function spaces, 2 Eds., New York: American Mathematical Society, 2007.
    [17] G. J. Murphy, C-algebras and operator theory, New York: Academic Press, 1990. https://doi.org/10.1016/C2009-0-22289-6
    [18] J. B. Conway, A course in functional analysis, New York: Springer, 1985. https://doi.org/10.1007/978-1-4757-3828-5
    [19] R. Douglas, Banach algebra techniques in operator theory, 2 Eds., New York: Springer, 1998. https://doi.org/10.1007/978-1-4612-1656-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1011) PDF downloads(59) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog