In this paper, we consider the H-Toeplitz and Toeplitz operators acting on the Bergman space. First, we describe the characterizations of commutativity of two H-Toeplitz operators with certain harmonic symbols. For the general case, it seems very hard. As an extension to the study of Toeplitz operators on the Bergman space, we present the necessary and sufficient conditions of the commutativity of the H-Toeplitz operator and the Toeplitz operator with non-harmonic symbols.
Citation: Qian Ding. Commuting Toeplitz operators and H-Toeplitz operators on Bergman space[J]. AIMS Mathematics, 2024, 9(1): 2530-2548. doi: 10.3934/math.2024125
In this paper, we consider the H-Toeplitz and Toeplitz operators acting on the Bergman space. First, we describe the characterizations of commutativity of two H-Toeplitz operators with certain harmonic symbols. For the general case, it seems very hard. As an extension to the study of Toeplitz operators on the Bergman space, we present the necessary and sufficient conditions of the commutativity of the H-Toeplitz operator and the Toeplitz operator with non-harmonic symbols.
[1] | K. Zhu, Operator theory in function spaces, 2 Eds., American Mathematical Society, 2007. |
[2] | A. E. Frazho, W. Bhosri, An operator perspective on signals and systems, Birkhäuser Basel, 2010. https://doi.org/10.1007/978-3-0346-0292-1 |
[3] | L. Brown, P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 213 (1964), 89–102. https://doi.org/10.1515/crll.1964.213.89 doi: 10.1515/crll.1964.213.89 |
[4] | S. Axler, Z. Čučković, Commuting Toeplitz operators with harmonic symbols, Integr. Equ. Oper. Theory, 14 (1991), 1–12. https://doi.org/10.1007/BF01194925 doi: 10.1007/BF01194925 |
[5] | I. Louhichi, L. Zakariasy, On Toeplitz operators with quasihomogeneous symbols, Arch. Math., 85 (2005), 248–257. https://doi.org/10.1007/s00013-005-1198-0 doi: 10.1007/s00013-005-1198-0 |
[6] | S. C. Arora, S. Palial, On H-Toeplitz operators, Bull. Pure Appl. Math., 1 (2007), 141–154. |
[7] | A. Gupta, S. K. Singh, H-Toeplitz operators on Bergman space, Bull. Korean Math., 58 (2021), 327–347. https://doi.org/10.4134/BKMS.B200260 doi: 10.4134/BKMS.B200260 |
[8] | J. Liang, L. Lai, Y. Zhao, Y. Chen, Commuting H-Toeplitz operators with quasihomogeneous symbol, AIMS Math., 7 (2022), 7898–7908. https://doi.org/10.3934/math.2022442 doi: 10.3934/math.2022442 |
[9] | S. Kim, J. Lee, Contractivity and expansivity of H-Toeplitz operators on the Bergman spaces, AIMS Math., 7 (2022), 13927–13944. https://doi.org/10.3934/math.2022769 doi: 10.3934/math.2022769 |
[10] | Q. Ding, Y. Chen, Product of H-Toeplitz operator and Toeplitz operator on the Bergman space, AIMS Math., 8 (2023), 20790–20801. https://doi.org/10.3934/math.20231059 doi: 10.3934/math.20231059 |
[11] | Ž. Čučković, N. V. Rao, Mellin transform, monomial symbols and commuting Toeplitz operators, J. Funct. Anal., 154 (1998), 195–214. https://doi.org/10.1006/jfan.1997.3204 doi: 10.1006/jfan.1997.3204 |