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Abstract: In this paper, we consider the H-Toeplitz and Toeplitz operators acting on the Bergman
space. First, we describe the characterizations of commutativity of two H-Toeplitz operators with
certain harmonic symbols. For the general case, it seems very hard. As an extension to the study of
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1. Introduction

Let D be the open unit disk in the complex plane C. As usual, L2(D) denotes the Hilbert space of
all Lebesgue square integrable functions on D with the inner product

〈 f , g〉 =

∫
D

f (z)g(z)dA(z),

for f , g ∈ L2(D), where dA is the normalized area measure on D. The Bergman space L2
a(D) is the

subset of L2(D), consisting of all analytic functions on D. Let P be the orthogonal projection from
L2(D) onto L2

a(D), then

P f (w) =

∫
D

f (z)
(1 − z̄w)2 dA(z),

for w ∈ D and f ∈ L2(D). For each z ∈ D, the reproducing kernel function in the Bergman space is
denoted by Kz which is given by

Kz(w) =
1

(1 − z̄w)2 , w ∈ D.

It is clear that {en}
+∞
n=0 forms an orthonormal basis for L2

a(D), where en(w) =
√

n + 1wn, see [1].
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Let L∞(D) be the set of all bounded measurable functions on D. Fix f ∈ L∞(D), the Toeplitz
operator T f on the Bergman space is defined by

T f g = P( f g), g ∈ L2
a(D).

Toeplitz operators and matrices have applications in control and signal-processing, see [2]. The
harmonic Bergman space L2

h(D) is the collection of all harmonic functions in L2(D). Define a unitary
operator K : L2

a → L2
h by K(e2n) = en and K(e2n+1) = en+1 for non-negative integers n. The H-Toeplitz

operator B f with symbol f on the Bergman space is defined by

B f g = P
(
f K(g)

)
, g ∈ L2

a(D).

One may check that B1 is not the identity operator.
Commuting Toeplitz operators has been studied on various function spaces in recent years. In [3],

Brown and Halmos obtained the necessary and sufficient conditions for commuting Toeplitz operators
on the Hardy space. In [4], Axler and Cuckovic proved a similar result for Toeplitz operators with
bounded harmonic symbols on the Bergman space. In [5], Louhichi and Zakariasy studied the same
problem with the quasihomogeneous symbols. All known results have shown that the characterization
of commuting Toeplitz operators is quite hard.

In 2007, Arora and Paliwal [6] studied the H-Toeplitz operator which have clubbed the notion
of Toeplitz and Hankel operators together on the Hardy space. But this operator is neither Toeplitz
nor Hankel operator. They also described the partial isometry, compact and hyponormal properties
of H-Toeplitz operators on the Hardy space in their paper. In 2021, Gupta and Singh first studied
the H-Toeplitz operator on the Bergman space [7]. They described the commutativity of H-Toeplitz
operators with analytic symbols which have nonzero real coefficients {an}

+∞
n=0 and {bn}

+∞
n=0 satisfying

bn+k
an+k
≥

b2n+1
a2n+1

for any n and k. In 2022, Liang et al. characterized the commuting H-Toeplitz operators
with quasihomogeneous symbols on the Bergman space [8]. The obtained results in [7, 8] show that
the commutativity of H-Toeplitz operators is quite different from the case of Toeplitz operators.

Some other properties of the H-Toeplitz operator have been studied. In 2022, Kim and Lee give
the necessary and sufficient conditions for contractive and expansive H-Toeplitz operators, see [9]. In
2023, Ding and Chen characterize the case when the product of two H-Toeplitz operators is another
H-Toeplitz operator with one general and another quasihomogeneous symbols, and also describe the
product of the H-Toeplitz operator and the Toeplitz operator to be another H-Toeplitz operator with
certain harmonic symbols, see [10].

Motivated by the above, in this paper we will characterize the commuting two H-Toeplitz operators
and the commuting Toeplitz and H-Toeplitz operators on the Bergman space as an extension to the
study of Toeplitz operators on the Bergman space. We will obtain several results as follows.

Theorem 1.1. Suppose p1, p2, q1, q2 are positive integers, f = a1wp1 + a2wp2 , g = b1wq1 + b2wq2 .
Then, B f Bg = BgB f if and only if there exist α, β ∈ C, |α| + |β| , 0 such that α f + βg = 0.

Theorem 1.2. Suppose f is a bounded harmonic function on D. Let p be a non-negative integer, then
Bwp B f = B f Bwp if and only if there exist c ∈ C such that f = cwp.

The above two results show that two H-Toeplitz operators with certain harmonic symbols commute
when two symbols are linearly dependent. The following result shows that, if a H-Toeplitz operator
and a Toeplitz operator with non-harmonic symbols commute, the symbols are either constant or zero.
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Theorem 1.3. Let φ be a bounded radial function and p be a non-negative integer. Suppose

f =
∑
k≥0

eikθϕk(r) ∈ L∞(D),

where each ϕk is a bounded radial function. Then, T f Beipθφ = BeipθφT f holds if and only if φ = 0 or f is
a constant.

The contents of the paper are organized as follows. In Section 2, we shall collect some results
as preliminaries which will be used frequently in this paper. In Section 3, we study the commuting
H-Toeplitz operators with certain harmonic symbols and prove Theorems 1.1 and 1.2. In Section 4,
we focus on the commutativity of a H-Toeplitz operator and a Toeplitz operator with non-harmonic
symbols, which proves Theorem 1.3.

2. Preliminaries

In this section, we present some useful lemmas which come from [8].

Lemma 2.1. Let p be a non-negative integer. For any non-negative n,

Bwp(w2n) =

√
n + 1

2n + 1
wn+p,

Bwp(w2n+1) =


√

n + 2
2n + 2

p − n
p + 1

wp−n−1, n ≤ p − 1,

0 , n>p − 1,

Bwp(w2n) =


√

n + 1
2n + 1

n − p + 1
n + 1

wn−p, n ≥ p,

0 , n<p,

Bwp(w2n+1) = 0.

Lemma 2.2. Let p and q be non-negative integers, then the following statements are equivalent:

(1) Bwp Bwq = Bwq Bwp ,

(2) Bwp Bwq = Bwq Bwp ,

(3) p = q.

Lemma 2.3. Let p be a non-negative integer, then Bwp Bwp = Bwp Bwp if and only if p = 0.

Lemma 2.4. Let p and q be different non-negative integers, a, b ∈ C, then Bawp Bbwq = Bbwq Bawp if and
only if ab = 0.
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3. The proof of Theorems 1.1 and 1.2

In this section, we prove the necessary and sufficient conditions for the commutativity of two H-
Toeplitz operators with certain harmonic symbols. First, we consider harmonic monomial symbols.

Proof of Theorem 1.1. The sufficiency is obvious, so now we prove the necessity. Suppose B f Bg =

BgB f . It is noted that

B f Bg = a1b1Bwp1 Bwq1 + a1b2Bwp1 Bwq2 + a2b1Bwp2 Bwq1 + a2b2Bwp2 Bwq2 , (3.1)

BgB f = b1a1Bwq1 Bwp1 + b2a1Bwq1 Bwp2 + b1a2Bwq2 Bwp1 + b2a2Bwq2 Bwp2 . (3.2)

By Lemma 2.1, for any non-negative integers n, it follows from the above that

B f Bg(w2n+1) = (a1b1Bwp1 Bwq1 + a2b1Bwp2 Bwq1 )(w2n+1),

BgB f (w2n+1) = (b1a1Bwq1 Bwp1 + b1a2Bwq2 Bwp1 )(w2n+1).

Case 1. We consider the case of p1 , q1.
For this case, we will first obtain a1b1 = 0. Without loss of generality, we assume p1<q1. It is

divided into the following two cases.
Case 1.1. Let p1 = q1 − 1, then p1 − 1<q1 − 1. Let n = q1 − 1,

B f Bg(w2q1−1) = (a1b1Bwp1 Bwq1 + a2b1Bwp2 Bwq1 )(w2q1−1)

= a1b1

√
q1 + 1

2q1

1
p1 + 1

wp1 ,

but

BgB f (w2q1−1) = (b1a1Bwq1 Bwp1 + b1a2Bwq2 Bwp1 )(w2q1−1) = 0,

therefore we have a1b1 = 0.
Case 1.2. Let p1<q1 − 1, then p1 − 1<q1 − 2. Let n = q1 − 2,

B f Bg(w2q1−3) = (a1b1Bwp1 Bwq1 + a2b1Bwp2 Bwq1 )(w2q1−3)

= a1b1

√
q1

2q1 − 2
2

q1 + 1
p1

p1 + 1
wp1−1,

but

BgB f (w2q1−3) = (b1a1Bwq1 Bwp1 + b1a2Bwq2 Bwp1 )(w2q1−3) = 0,

we also get a1b1 = 0.
The above two cases show that a1 = 0 or b1 = 0 when p1 , q1. Based on this, we will get a2b1 = 0.

For this, the argument is also divided into the following two cases.
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Case 1.3. Let a1 = 0. Then f = a2wp2 , g = b1wq1 + b2wq2 . Choose n > max{q2, p2}, then

B f Bg(w2n) = Ba2wp2 Bb1wq1 +b2wq2 (w2n)

=

√
n + 1

2n + 1
a2Bwp2 (b1wq1+n + b2

n − q2 + 1
n + 1

wn−q2),
(3.3)

BgB f (w2n) = Bb1wq1 +b2wq2 Ba2wp2 (w2n)

=

√
n + 1

2n + 1
a2Bb1wq1 +b2wq2 (

n − p2 + 1
n + 1

wn−p2).
(3.4)

Case 1.3.1. If both q1 and q2 are even, choose n ≥ 2(q1 + p2 + q2) where n is even, then (3.3) becomes

a2

√
n + 1

2n + 1

(
b1

√
q1+n

2 + 1
q1 + n + 1

q1+n
2 − p2 + 1

q1+n
2 + 1

w
q1+n

2 −p2

+ b2
n − q2 + 1

n + 1

√
n−q2

2 + 1
n − q2 + 1

n−q2
2 − p2 + 1

n−q2
2 + 1

w
n−q2

2 −p2
)
.

(3.5)

Note that, q1+n
2 − p2 >

n−q2
2 − p2.

Now, if p2 is also even, then for even n ≥ 2(q1 + p2 + q2), (3.4) becomes√
n + 1

2n + 1
a2

n − p2 + 1
n + 1

√
n−p2

2 + 1
n − p2 + 1

(
b1wq1+

n−p2
2 + b2

n−p2
2 − q2 + 1

n−p2
2 + 1

w
n−p2

2 −q2
)
. (3.6)

Note that, q1 +
n−p2

2 > n−p2
2 − q2.

Comparing with (3.5) and (3.6) and observing the degree of w, we have that: If q1+n
2 − p2 = q1 +

n−p2
2

and n−q2
2 − p2 =

n−p2
2 − q2, then p2 = −q1, p2 = q2. Under this condition, p2 = −q1, which is a

contradiction since p2, q2, q1 are positive integers. Hence, a2b1 = 0, p2 = q2. If q1+n
2 − p2 =

n−p2
2 − q2

or q1 +
n−p2

2 =
n−q2

2 − p2, it means that the coefficient of the biggest degree of w in either (3.6) or (3.5)
is zero. Hence, a2b1 = 0.

If p2 is odd, for even n ≥ 2(q1 + p2 + q2), (3.4) equals to zero. Immediately, it follows from (3.5)
that a2b1 = 0.
Case 1.3.2. If both q1 and q2 are odd, let n ≥ 2(q1 + p2 + q2) where n is odd, meaning that both q1 − n
and q2 − n are even, then (3.5) still holds. If p2 is odd then p2 − n is even, (3.6) is still true, with the
similar argument as done before, we have a2b1 = 0, p2 = q2. If p2 is even, (3.4) becomes zero, then
a2b1 = 0 is similarly as above.
Case 1.3.3. If one of q1 and q2 is even and another is odd: Assume that q1 is even, we can choose the
even n satisfying n ≥ 2(q1 + p2 + q2). For (3.3) equals (3.4),

a2b1

√
n + 1

2n + 1

√
q1+n

2 + 1
q1 + n + 1

q1+n
2 − p2 + 1

q1+n
2 + 1

w
q1+n

2 −p2 =

0, p2 is odd,

(3.6), p2 is even.

We see the degree of w in above equation satisfies either q1+n
2 − p2 = q1 +

n−p2
2 or q1+n

2 − p2 =
n−p2

2 −q2

or q1+n
2 − p2 = 0. Each of these three conditions implies a2b1 = 0. If q1 is odd, we can choose the odd

n satisfying n ≥ 2(q1 + p2 + q2). With the similar argument, we also have a2b1 = 0.
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In summary, when a1 = 0, we get a2b1 = 0. If a1 = a2 = 0, then f = 0. If a1 = b1 = 0, then
B f Bg = BgB f becomes a2b2Bwp2 Bwq2 = a2b2Bwq2 Bwp2 , by Lemma 2.2, then a2b2 = 0 or p2 = q2.
Case 1.4. Let b1 = 0. By (3.3) and (3.4), using the same arguments as done in Case 1.3, it follows that
g = 0 or a1 = b1 = 0, then a2b2 = 0 or p2 = q2.
Case 2. We now turn to consider the case of p1 = q1.

If B f Bg = BgB f , by (3.1) and (3.2), it follows that

(a1b2Bwp1 Bwq2 + a2b1Bwp2 Bwp1 + a2b2Bwp2 Bwq2 )(w2n)

= (b1a2Bwp1 Bwp2 + b2a1Bwq2 Bwp1 + b2a2Bwp2 Bwq2 )(w2n),
(3.7)

for any non-negative integers n.
Case 2.1. We now consider the case of p2 , q2. Choose n = min{p2, q2}. Assume that p2<q2, then
n = p2 and (3.7) becomes√

p2 + 1
2p2 + 1

a2b1Bwp2 (wp1+p2) =

√
p2 + 1

2p2 + 1

(
a2b1

1
p2 + 1

wp1 + b2a1Bwq2 (wp1+p2)
)
. (3.8)

For the left side of (3.8), the degree of w is either p1−p2
2 or zero. For the right side of (3.8), the degree

of w of Bwq2 (wp1+p2) is either p1+p2
2 − q2 or zero. As we assume, p2 < q2 and p1, p2, q2 are positive

integers, thus p1 ,
p1−p2

2 and p1 ,
p1+p2

2 − q2. Hence, the coefficient of wp1 is zero, that is, a2b1 = 0,
which yields a2 = 0 or b1 = 0.
Case 2.1.1. If a2 = 0, then f = a1wp1 , g = b1wq1 + b2wq2 . (3.7) then becomes

a1b2Bwp1 Bwq2 (w2n) = b2a1Bwq2 Bwp1 (w2n).

By Lemma 2.4, a1b2 = 0. It follows that f = 0 or a2 = b2 = 0, which is f = a1wp1 , g = b1wp1 .
Case 2.1.2. If b1 = 0, then f = a1wp1 + a2wp2 , g = b2wq2 . (3.7) then becomes

a1b2Bwp1 Bwq2 (w2n) + a2b2Bwp2 Bwq2 (w2n) = b2a1Bwq2 Bwp1 (w2n) + b2a2Bwp2 Bwq2 (w2n).

For p2 < q2, set n > 2q2 + p2 + 1. From the above equation, it follows that

n − q2 + 1
n + 1

(
a1b2Bwp1 (wn−q2) + a2b2Bwp2 (wn−q2)

)
=

(
b2a1Bwq2 (wp1+n) + b2a2

n − p2 + 1
n + 1

Bwq2 (wn−p2)
)
.

(3.9)

Now we choose n such that n − q2 is even.Then the left side of (3.9) becomes

n − q2 + 1
n + 1

√
n−q2

2 + 1
n − q2 + 1

(
a1b2wp1+

n−q2
2 + a2b2

n−q2
2 − p2 + 1

n−q2
2 + 1

w
n−q2

2 −p2
)
. (3.10)

If p1 + n and n − p2 are even, the right of (3.9) becomes

a1b2

√
n+p1

2 + 1
n + p1 + 1

n+p1
2 − q2 + 1

n+p1
2 + 1

w
n+p1

2 −q2

+ a2b2
n − p2 + 1

n + 1

√
n−p2

2 + 1
n − p2 + 1

n−p2
2 − q2 + 1

n−p2
2 + 1

w
n−p2

2 −q2 .

(3.11)
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Looking the degree of w, it follows that p1 +
n−q2

2 > n−q2
2 − p2 in (3.10) and n+p1

2 − q2 >
n−p2

2 − q2

in (3.11).
Comparing (3.10) with (3.11), if p1 +

n−q2
2 =

n+p1
2 − q2 and n−q2

2 − p2 =
n−p2

2 − q2, then p1 = −q2,
q2 = p2. These both contradict that p2, q2, p1 are positive integers and p2 , q2. So, we have a1b2 = 0.
If p1 +

n−q2
2 =

n−p2
2 − q2 or n−q2

2 − p2 =
n+p1

2 − q2, then either the last term of (3.11) or the last term
of (3.10) is zero. This also gives a1b2 = 0.

If at least one of p1 + n and n − p2 is odd, then (3.11) becomes

a2b2
n − p2 + 1

n + 1

√
n−p2

2 + 1
n − p2 + 1

n−p2
2 − q2 + 1

n−p2
2 + 1

w
n−p2

2 −q2

or

a1b2

√
n+p1

2 + 1
n + p1 + 1

n+p1
2 − q2 + 1

n+p1
2 + 1

w
n+p1

2 −q2 .

Applying similar and easier arguments as done above, we also get that a1b2 = 0.
To sum up, when b1 = 0, we get a1b2 = 0. If b1 = b2 = 0, then g = 0. If a1 = b1 = 0, then by

Lemma 2.2, a2b2 = 0 or p2 = q2.
Case 2.2. We consider the case when p1 = q1, p2 = q2, that is f = a1wp1 + a2wp2 , g = b1wp1 + b2wp2 .
By (3.1) and (3.2), this implies that

(a1b2 − b1a2)(Bwp1 Bwp2 − Bwp2 Bwp1 ) = 0.

By Lemmas 2.3 and 2.4, Bwp1 Bwp2 − Bwp2 Bwp1 , 0. We then obtain a1b2 − b1a2 = 0. The proof
is complete. �

Now we turn to more general cases. Before we consider the case where one symbol is an analytic
monomial and another is a harmonic function, we need the following two lemmas.

Lemma 3.1. Suppose f is a bounded harmonic function on D. Then, B f B1 = B1B f if and only if f is
a constant.

Proof. Write f = f+ + f− where f+ =
∑∞

i=1 aiwi and f− =
∑∞

j=0 b jw j are analytic functions. By
Lemma 2.1, B1(w) = 0, implying that B1B f (w) = 0. Again, by Lemma 2.1

B1B f (w) =

∞∑
i=0

a2i+1
2i + 1
2i + 2

√
i + 1

2i + 1
wi = 0.

So a2i+1 = 0, i ≥ 0. By using B f B1(1) = B1B f (1), we get the following equation

∞∑
i=1

a2iw2i =

∞∑
i=1

a2i

√
i + 1

2i + 1
wi.

Comparing the lowest degree of w, it is easy to see that a2i = 0 for all i ≥ 1. Hence, f+ = 0.

AIMS Mathematics Volume 9, Issue 1, 2530–2548.



2537

Now we turn to the co-analytic part of f . By

B f−B1(w4n+2) =

√
2n + 2
4n + 3

B f−(w
2n+1) = 0,

we have

B1B f−(w
4n+2) =

n∑
j=0

b2 j+1
2n − j + 1

2n + 2

√
n − j + 1

2n − 2 j + 1
wn− j = 0.

Hence, b2 j+1 = 0, j = 0, 1, 2 . . . , n. Because n is any non-negative integer, then b2 j+1 = 0 for all
j ≥ 0. Also, for any positive integer n, by B f−B1(w4n) = B1B f−(w

4n), we get the following equation√
n + 1

2n + 1

n∑
j=1

b2 j
2n − j + 1

2n + 1
wn−2 j =

n∑
j=1

b2 j
2n − 2 j + 1

2n + 1

√
n − j + 1

2n − 2 j + 1
wn− j.

Comparing the highest degree of w, we easily obtain that b2 j = 0, j = 1, 2, 3, . . . , n. Because n is
any positive integer, then b2 j = 0, j > 0. Hence, f− = b0 is a constant. Therefore, f is a constant. �

Lemma 3.2. Suppose g is a bounded analytic function on D with g(0) = 0. Let p be a non-negative
integer, then Bwp Bg = BgBwp if and only if g = 0.

Proof. The sufficiency is obvious, so now we prove the necessity. If p = 0, by Lemma 3.1, g = 0. Now
we consider the case when p ≥ 1. Suppose that Bwp Bg = BgBwp , and write g as

∑∞
j=1 b jw j.

Case 1. p is even. Then, for any non-negative integer n, p + 2n + 1 is odd. By Lemma 2.1,

BgBwp(w4n+2) =

√
2n+2
4n+3 Bg(wp+2n+1) = 0. Since

Bwp Bg(w4n+2) =

√
2n + 2
4n + 3

Bwp

( n∑
j=0

b2 j+1
2n − 2 j + 1

2n + 1
w2n−2 j +

n∑
j=0

b2 j
n − j + 1

n + 1
w2n−2 j+1

)
,

hence

Bwp Bg(w4n+2) =

√
2n + 2
4n + 3

[ n∑
j=0

b2 j+1
2n − 2 j + 1

2n + 1

√
n − j + 1

2n − 2 j + 1
wn− j+p

+ P
(
wp

n∑
j=0

b2 j
n − j + 1

n + 1

√
n − j + 2

2n − 2 j + 2
wn− j+1

)]
= 0.

(3.12)

The degree of w in the first term of above equation is from p to n + p, while in the second term, it
is not greater than p − 1. So immediately we get b2 j+1 = 0, j = 0, 1, 2, ..., n.
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Because n is any non-negative integer, b2 j+1 = 0 for any integer j ≥ 0. Now again, by (3.12),

0 = P
(
wp

n∑
j=0

b2 j
n − j + 1

n + 1

√
n − j + 2

2n − 2 j + 2
wn− j+1

)

=



n−1∑
j=0

b2 j
n − j + 1

n + 1

√
n − j + 2

2n − 2 j + 2
p − n + j

p + 1
wp−n+ j−1, n ≤ p − 1,

n−1∑
j=n−p

b2 j
n − j + 1

n + 1

√
n − j + 2

2n − 2 j + 2
p − n + j

p + 1
wp−n+ j−1, n>p − 1.

Since n is any non-negative integer, by the above, it is easy to see that b2 j = 0 for j ≥ 0. Hence,
b j = 0 for any j ≥ 0, we get that g = 0.
Case 2. p is odd. Then, for any non-negative integer n, we see that p + 2n is odd. Thus, with similar
arguments as Case 1 when applying Bwp Bg(w4n) = BgBwp(w4n), one may get the desired conclusion. �

We are now ready to prove the commutativity of two H-Toeplitz operators with one symbol being
an analytic monomial and another being a harmonic one. For the general case, it seems very hard.

Proof of Theorem 1.2. The sufficiency is obvious, so now we prove the necessity. If p = 0, by
Lemma 3.1, f is constant. We only need to prove the case when p is a positive integer. Write f = f++ f−
and assume that f+ =

∑∞
i=0 aiwi. Suppose Bwp B f = B f Bwp , then

Bwp B f+ + Bwp B f− = B f+ Bwp + B f−Bwp . (3.13)

For non-negative integer n, by Lemma 2.1 we see that Bwp B f−(w
2n+1) = 0. When n ≥ p, we have

Bwp(w2n+1) = 0, thus (3.13) implies that Bwp B f+(w2n+1) = 0 when n ≥ p.
Case 1. p is even. Let n = p, then a direct computation gives that

0 = Bwp B f+(w2p+1)

=

√
p + 2

2p + 2
Bwp

( ∞∑
i= p

2

a2i+1
2i − p + 1

2i + 2
w2i−p +

∞∑
i= p

2 +1

a2i
2i − p
2i + 1

w2i−p−1
)

=

√
p + 2

2p + 2

( ∞∑
i= p

2

a2i+1
2i − p + 1

2i + 2

√
i − p

2 + 1
2i − p + 1

wi+ p
2

+

3p
2∑

i= p
2 +1

a2i
2i − p
2i + 1

√
i − p

2 + 1
2i − p

3p
2 − i + 1

p + 1
w

3p
2 −i

)
.

(3.14)

By (3.14), we get a2i+1 = 0 for any i ≥ p
2 , which implies ap+1 = ap+3 = · · · = 0. Let n = p + 1, then

a direct computation gives that
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0 = Bwp B f+(w2p+3)

=

√
p + 3

2p + 4
Bwp

( ∞∑
i= p

2 +1

a2i
2i − p − 1

2i + 1
w2i−p−2 +

∞∑
i= p

2 +1

a2i+1
2i − p
2i + 2

w2i−p−1
)

=

√
p + 3

2p + 4

( ∞∑
i= p

2 +1

a2i
2i − p − 1

2i + 1

√
i − p

2

2i − p − 1
w

p
2 +i−1

+

3p
2∑

i= p
2 +1

a2i+1
i − p

2

i + 1

√
i − p

2 + 1
2i − p

3p
2 − i + 1

p + 1
w

3p
2 −i

)
.

(3.15)

By (3.15), we get a2i = 0 for any i ≥ p
2 + 1, which implies ap+2 = ap+4 = · · · = 0. Thus,

f+ =
∑p

i=0 aiwi. Next, we will show a0, ..., ap−1 are zero.
Again by Lemma 2.1, Bwp B f−(w) = B f−Bwp(w) = 0, and by (3.13) we obtain the following two

equations which are equal:

Bwp B f+(w) = Bwp(

p
2∑

i=1

a2i
2i

2i + 1
w2i−1 +

p
2−1∑
i=0

a2i+1
2i + 1
2i + 2

w2i)

=

p
2∑

i=1

a2i
2i

2i + 1

√
i + 1

2i
p − i + 1

p + 1
wp−i +

p
2−1∑
i=0

a2i+1
2i + 1
2i + 2

√
i + 1

2i + 1
wi+p,

(3.16)

B f+ Bwp(w) =
p

p + 1

√
p
2 + 1

p

p∑
i= p

2

ai
i − p

2 + 1
i + 1

wi− p
2 . (3.17)

Note that the degree of w of the first term in (3.16) is from p
2 to p − 1, and the second term is

from p to 3p
2 − 1. But in (3.17), the degree of w is from 0 to p

2 . This means that in (3.16), the
second term is zero, and in the first term, the coefficients of wp−i are zero except w

p
2 . This implies that

a0 = a1 = · · · = ap−1 = 0. Hence, ai = 0 except ap. At this time, both (3.16) and (3.17) are equal to√
p
2 +1

p
p

p+1apw
p
2 . Hence, f+ = cwp with c = ap.

Case 2. p is odd. Let n = p, then a direct computation gives that

0 = Bwp B f+(w2p+1)

=

√
p + 2

2p + 2
Bwp

( ∞∑
i= p+1

2

a2i+1
2i − p + 1

2i + 2
w2i−p +

∞∑
i= p+1

2

a2i
2i − p
2i + 1

w2i−p−1
)

=

√
p + 2

2p + 2

( 3p−1
2∑

i= p+1
2

a2i+1
2i − p + 1

2i + 2

√
i − p−1

2 + 1
2i − p + 1

3p−1
2 − i + 1

p + 1
w

3p−1
2 −i

+

∞∑
i= p+1

2

a2i
2i − p
2i + 1

√
i − p+1

2 + 1
2i − p

wi+ p−1
2
)
.

(3.18)
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Let n = p + 1, then we obtain

0 = Bwp B f+(w2p+3)

=

√
p + 3

2p + 4
Bwp

( ∞∑
i= p+1

2

a2i+1
2i − p
2i + 2

w2i−p−1 +

∞∑
i= p+1

2 +1

a2i
2i − p − 1

2i + 1
w2i−p−2

)

=

√
p + 3

2p + 4

( ∞∑
i= p+1

2

a2i+1
2i − p
2i + 2

√
i − p+1

2 + 1
2i − p

wi+ p−1
2

+

3p+1
2∑

i= p+1
2 +1

a2i
2i − p − 1

2i + 1

√
i − p+1

2 + 1
2i − p − 1

3p+1
2 − i + 1

p + 1
w

3p+1
2 −i

)
.

(3.19)

By (3.18) and (3.19), with similar arguments as done in Case 1, we get f+ =
∑p

i=0 aiwi. On the other
hand, by Lemma 2.1, Bwp B f−(1) = B f−Bwp(1) = 0, and by (3.13), we see that Bwp B f+(1) = B f+ Bwp(1). A
direct computation gives that

Bwp B f+(1) = Bwp(

p−1
2∑

i=0

a2iw2i +

p−1
2∑

i=0

a2i+1w2i+1)

=

p−1
2∑

i=0

a2i

√
i + 1
2i + 1

wi+p +

p−1
2∑

i=0

a2i+1

√
i + 2

2i + 2
p − i
p + 1

wp−1−i,

(3.20)

B f+ Bwp(1) =

√
p+1

2 + 1
p + 1

p∑
i= p+1

2

ai
i − p+1

2 + 1
i + 1

wi− p+1
2 . (3.21)

By (3.20) and (3.21) and applying similar arguments as done in Case 1, we obtain f+ = cwp, where
c = ap.

In summary, since f+ = cwp, B f Bwp = Bwp B f gives that Bwp B f− = B f−Bwp , which means f− = 0 by
Lemma 3.2. The proof is complete. �

Now we shall prove the result about commuting H-Toeplitz operators where one symbol is a co-
analytic monomial and another is an analytic function.

Theorem 3.3. Suppose f is a bounded analytic function onD. Let q be a positive integer, then Bwq B f =

B f Bwq if and only if f = 0.

Proof. The sufficiency is obvious, so now we only need to prove the necessity. Suppose Bwq B f = B f Bwq

and write f as
∑∞

i=0 aiwi. By Lemma 2.1, B f Bwq(1) = B f Bwq(w) = 0, so we have

Bwq B f (1) =

∞∑
i=q

a2i

√
i + 1

2i + 1
i − q + 1

i + 1
wi−q = 0,

AIMS Mathematics Volume 9, Issue 1, 2530–2548.



2541

Bwq B f (w) =

∞∑
i=q

a2i+1
2i + 1
2i + 2

√
i + 1

2i + 1
i − q + 1

i + 1
wi−q = 0.

It follows that ai = 0 for any i ≥ 2q. It remains to be shown that ai = 0, i = 1, 2, · · · , 2q − 1.
Again by Lemma 2.1 ,

B f Bwq(w6q) =

√
3q + 1
6q + 1

2q + 1
3q + 1

B f (w2q)

=

√
3q + 1
6q + 1

2q + 1
3q + 1

√
q + 1

2q + 1

2q−1∑
i=0

aiwi+q,

(3.22)

Bwq B f (w6q) =

√
3q + 1
6q + 1

Bwq(
q−1∑
i=0

a2i+1w2i+1+3q +

q−1∑
i=0

a2iw2i+3q)

=



√
3q + 1
6q + 1

p−1∑
i=0

a2i

√
i +

3q
2 + 1

2i + 3q + 1
i +

q
2 + 1

i +
3q
2 + 1

wi+ q
2 , q is even,

√
3q + 1
6q + 1

q−1∑
i=0

a2i+1

√
i +

3q+1
2 + 1

2i + 3q + 2
i +

q+1
2 + 1

i +
3q+1

2 + 1
wi+ q+1

2 , q is odd.

(3.23)

Case 1. q is even, so p ≥ 2. Note that (3.22) equals (3.23), so the following equation holds

2q + 1
3q + 1

√
q + 1

2q + 1

2q−1∑
i=0

aiwi+q =

q−1∑
i=0

a2i

√
i +

3q
2 + 1

2i + 3q + 1
i +

q
2 + 1

i +
3q
2 + 1

wi+ q
2 . (3.24)

The degree of w in the left side is from q to 3q− 1 and the right is from q
2 to 3q

2 − 1, so we get a0 = 0
immediately. Since 3q−1 > 3q

2 −1, on the left side of (3.24), the coefficients of wt from t =
3q
2 to 3q−1

are zero, meaning a q
2

= · · · = a2q−1 = 0. If q = 2, the desired conclusion holds. If q ≥ 4, substitute
a0 = 0 and a q

2
= · · · = a2q−1 = 0 into (3.24), notice that aq = 0, then we get

2q + 1
3q + 1

√
q + 1

2q + 1

q
2−1∑
i=1

aiwi+q =

q
2−1∑
i=1

a2i

√
i +

3q
2 + 1

2i + 3q + 1
i +

q
2 + 1

i +
3q
2 + 1

wi+ q
2 . (3.25)

The degree of w on the left side is from q + 1 to 3q
2 − 1, and the right is from q

2 + 1 to q − 1, but
q
2 + 1 < q − 1 < q + 1 ≤ 3q

2 − 1, thus on the left side of (3.25), a1 = · · · = a q
2−1 = 0, which is the

desired conclusion.
Case 2. p is odd. Because (3.22) equals (3.23), the following equation holds:

2q + 1
3q + 1

√
q + 1
2q + 1

2q−1∑
i=0

aiwi+q =

q−1∑
i=0

a2i+1

√
i +

3q+1
2 + 1

2i + 3q + 2
i +

q+1
2 + 1

i +
3q+1

2 + 1
wi+ q+1

2 .

If q = 1, the above equation becomes 3
4

√
2
3 (a0w + a1w2) = 2

3

√
3
5a1w, then a0 = a1 = 0. If q ≥ 3,

from the above equation we immediately get a0 = 0 and applying the same arguments as done when q
is even, we get the desired result.

Therefore, ai = 0 for any i ≥ 0, that is, f = 0. The proof is complete. �
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4. The proof of Theorem 1.3

The aim of this section is to find the necessary and sufficient conditions of the commutativity of
H-Toeplitz and Toeplitz operators with non-harmonic symbols.

To discuss one of our main results, we will use the Mellin transform ϕ̂ of the function ϕ ∈

L1([0, 1], rdr), which is defined by

ϕ̂(w) =

∫ 1

0
ϕ(r)rw−1dr.

It is known that ϕ is analytic on {w : Re w > 2}. The following lemmas has been proved in [8],
which will be used in the following.

Lemma 4.1. Let ϕ ∈ L1([0, 1], rdr). If there exist a sequence of positive integers nk such that
∞∑

k=1

1
nk

= ∞

and ϕ̂(nk) = 0 for all k, then ϕ = 0.

Let R be the space of square integrable functions on [0, 1] with respect to the measure rdr. It is
clear that the functions in R are radial functions on D. Since trigonometric polynomials are dense in
L2 and eik1θR is orthogonal to eik2θR for k1 , k2, one can see

L2 =
⊕
k∈Z

eikθR.

So, for each f ∈ L2(D), it can be written as (see [11])

f (reiθ) =
∑
k∈Z

eikθϕk(r),

where each ϕk ∈ R is a bounded radial function when f ∈ L∞(D). Each function in eikθR is called a
quasihomogeneous function with degree k.

Lemma 4.2. Let φ be a bounded radial function and p an integer. For any non-negative integer n,

Beipθφ(w2n) =

2

√
n + 1

2n + 1
(n + p + 1)φ̂(2n + p + 2)wn+p, n + p ≥ 0,

0 , n + p < 0,

Beipθφ(w2n+1) =

2

√
n + 2

2n + 2
(p − n)φ̂(p + 2)wp−n−1, n + 1 ≤ p,

0 , n + 1 > p,

By Lemma 4.2, we obtain the following lemmas immediately.

Lemma 4.3. Suppose f =
∑∞

k=0 eisθϕk(r) ∈ L∞(D) where each ϕk is a radial function. For any non-
negative integer n,

B f (w2n) = 2
∞∑

k=0

√
n + 1
2n + 1

(n + k + 1)ϕ̂k(k + 2n + 2)wn+k.
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The following lemma is proved in [5] which will be used later.

Lemma 4.4. Let p be an integer and ψ be a bounded radial function on D. Then, for any non-negative
integer n,

Teipθψ(wn) =

2(n + p + 1)ψ̂(2n + p + 2)wn+p, n + p ≥ 0,
0 , n + p < 0.

In order to prove Theorem 1.3, we first give the following lemma.

Lemma 4.5. Let φ , 0 be a bounded radial function and p an integer. Write

f =
∑
k∈Z

eikθϕk(r) ∈ L∞(D),

where each ϕk is a bounded radial function. If T f Beipθφ = BeipθφT f , then ϕ2k+1 = 0 for each k.

Proof. Choose n satisfying n > |p|, which means n + 1 > p. By Lemma 4.2, Beipθφ(w2n+1) = 0, and by
Lemma 4.4,

0 = BeipθφT f (w2n+1) = 2Beipθφ

( ∞∑
k=−2n−1

(2n + 2 + k)ϕ̂k(4n + 4 + k)wk+2n+1
)

= 2Beipθφ

( ∞∑
k=−n−1

(2n + 3 + 2k)ϕ̂2k+1(4n + 5 + k)w2k+2n+2

+

∞∑
k=−n

(2n + 2 + 2k)ϕ̂2k(4n + 4 + 2k)w2k+2n+1
)
.

(4.1)

We will show ϕ2k+1 = 0 for each integer k in the following two cases.
Case 1. p ≤ 0. In this case, (4.1) becomes

0 =

∞∑
k=−n−1−p

(2n + 3 + 2k)ϕ̂2k+1(4n + 5 + k)

√
k + n + 2

2k + 2n + 3

× (k + n + 2 + p)φ̂(2k + 2n + 3 + p)wk+n+1+p,

then
ϕ̂2k+1(4n + 5 + k)φ̂(2k + 2n + 3 + p) = 0

holds, where k > −n − 1 − p. Set

Ek =
{
n ≥ |p| : φ̂(2k + 2n + 3 + p) , 0

}
,

As we assume φ , 0, by Lemma 4.1,
∑

n∈Ek
1
n = ∞. For each k, choose n ∈ Ek then ϕ̂2k+1(4n+5+k) =

0 with
∑

n∈Ek
1

4n+5+k = ∞. By Lemma 4.1, we get ϕ2k+1 = 0, where k > −n − 1 − p. For any integer n
with n ≥ |p|, we get ϕ2k+1 = 0 for each integer k.
Case 2. p > 0. So (4.1) becomes

0 =

∞∑
k=−n−1

(2n + 3 + 2k)ϕ̂2k+1(4n + 5 + k)

√
k + n + 2

2k + 2n + 3
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× (k + n + 2 + p)φ̂(2k + 2n + 3 + p)wk+n+1+p,

and then
ϕ̂2k+1(4n + 5 + k)φ̂(2k + 2n + 3 + p) = 0

holds, where k > −n − 1. With the similar arguments as done in Case 1, we can obtain ϕ2k+1 = 0 for
each integer k. �

Lemma 4.6. Let φ and ϕ be bounded radial functions and p be a non-negative integer. TϕBeipθφ =

BeipθφTϕ holds if and only if φ = 0 or ϕ is a constant.

Proof. For any non-negative integer n, by Lemmas 4.2 and 4.4,

TϕBeipθφ(w2n) = 2

√
n + 1

2n + 1
(n + p + 1)φ̂(2n + p + 2)Tϕ(wn+p)

= 4

√
n + 1

2n + 1
(n + p + 1)φ̂(2n + p + 2)(n + p + 1)ϕ̂(2n + 2p + 2)wn+p,

BeipθφTϕ(w2n) = 2(2n + 1)ϕ̂(4n + 2)Beipθφ(w2n)

= 4

√
n + 1

2n + 1
(2n + 1)ϕ̂(4n + 2)(n + p + 1)φ̂(2n + p + 2)wn+p.

Hence, we get that, for any non-negative integer n,[
(2n + 1)ϕ̂(4n + 2) − (n + p + 1)ϕ̂(2n + 2p + 2)

]
φ̂(2n + p + 2) = 0. (4.2)

Set
E =

{
n ≥ |p| : φ̂(2n + p + 2) = 0

}
.

By Lemma 4.1, if
∑

n∈E
1
n = ∞, then φ = 0. Otherwise,

∑
n∈Ec

1
n = ∞, where Ec is the complement

of E in the set of non-negative integers. Then,

(2n + 1)ϕ̂
[
2(2n + 1)

]
= (n + p + 1)ϕ̂

[
2(n + 1) + 2p

]
, n ∈ Ec.

This implies that

1
2

zϕ̂(z) =
[1
4

(z + 2) + p
]
ϕ̂
[1
2

(z + 2) + 2p
]
, ∀Rez ≥ 2.

So,

1̂
(1
2

z + 2p + 1
)
ϕ̂(z) = 1̂(z)ϕ̂

(1
2

z + 2p + 1
)
.

Denote that

G(z) =
ϕ̂(z)

1̂(z)
.

Notice that G(z) = G( 1
2z + 2p + 1), and it can be written as G(2w) = G(w + 2p + 1) where z = 2w.

With similar proof of Theorem 3.6 in [8], it follows that G(z) is a constant, namely λ. Then,

ϕ̂(z) = λ̂1(z) = λ̂(z).

Therefore, ϕ is constant. �
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Proof of Theorem 1.3. If φ = 0, the conclusion is obvious. In the following we assume φ , 0. By
Lemma 4.5, ϕ2k+1 = 0 for each integer k. Now, f can be written as

f =
∑
k≥0

ei(2k)θϕ2k(r).

We now show that ϕ2k = 0 for k > 0. For any non-negative integer n, by Lemmas 4.3 and 4.4, then

T f Beipθφ(w2n) = 2

√
n + 1
2n + 1

(n + p + 1)φ̂(2n + p + 2)T f (wn+p)

= 4

√
n + 1
2n + 1

(n + p + 1)φ̂(2n + p + 2)

×

+∞∑
k=0

(n + p + 2k + 1)ϕ̂2k(2n + 2p + 2k + 2)wn+p+2k,

BeipθφT f (w2n) = 2
+∞∑
k=0

(2n + 2k + 1)ϕ̂2k(4n + 2k + 2)Beipθφ(w2n+2k)

= 4
+∞∑
k=0

(2n + 2k + 1)ϕ̂2k(4n + 2k + 2)

×

√
n + k + 1

2n + 2k + 1
(n + k + p + 1)φ̂(2n + 2k + p + 2)wn+k+p.

We have that √
n + 1

2n + 1
(n + p + 1)φ̂(2n + p + 2)

×

+∞∑
k=0

(n + p + 2k + 1)ϕ̂2k(2n + 2p + 2k + 2)wn+p+2k

=

+∞∑
k=0

(2n + 2k + 1)ϕ̂2k(4n + 2k + 2)

×

√
n + k + 1

2n + 2k + 1
(n + k + p + 1)φ̂(2n + 2k + p + 2)wn+k+p.

(4.3)

Comparing two sides of (4.3), the degrees of w are the same when k = 0. Using the same argument
as done in Lemma 4.6, we get that ϕ0 is constant. So, (4.3) becomes√

n + 1
2n + 1

(n + p + 1)φ̂(2n + p + 2)

×

+∞∑
k=1

(n + p + 2k + 1)ϕ̂2k(2n + 2p + 2k + 2)wn+p+2k

=

+∞∑
k=1

(2n + 2k + 1)ϕ̂2k(4n + 2k + 2)

×

√
n + k + 1

2n + 2k + 1
(n + k + p + 1)φ̂(2n + 2k + p + 2)wn+k+p.

(4.4)
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By (4.4), the lowest of the degree of w on the left is n + p + 2, but on the right it is n + p + 1. It is
clear that the coefficient of wn+p+1 is zero, that is

ϕ̂2(4n + 4)φ̂(2n + p + 4) = 0.

Set
E2 =

{
n ≥ |p| : φ̂(2n + p + 4)) , 0

}
.

As we assume φ , 0, by Lemma 4.1,
∑

n∈E2
1
n = ∞. Choosing n ∈ E2, then ϕ̂2(4n + 4) = 0 with∑

n∈E2
1

4n+4 = ∞. By Lemma 4.1 we get ϕ2 = 0. Then, (4.3) becomes√
n + 1

2n + 1
(n + p + 1)φ̂(2n + p + 2)

×

+∞∑
k=2

(n + p + 2k + 1)ϕ̂2k(2n + 2p + 2k + 2)wn+p+2k

=

+∞∑
k=2

(2n + 2k + 1)ϕ̂2k(4n + 2k + 2)

×

√
n + k + 1

2n + 2k + 1
(n + k + p + 1)φ̂(2n + 2k + p + 2)wn+k+p.

(4.5)

Again, by (4.5), the lowest of the degree of w on the left is n + p + 4, but on the right it is n + p + 2.
The coefficient of wn+p+2 on the right is zero, that is

ϕ̂4(4n + 6)φ̂(2n + p + 6) = 0.

Set
E4 =

{
n ≥ |p| : φ̂(2n + p + 6)) , 0

}
.

By using similar argument as done above, we get ϕ4 = 0. One can see that if the lowest degrees of
w on both sides of (4.5) are different, then the coefficients should be zero. Thus, we have ϕ2k = 0 for
k > 0. Further, ϕk = 0 for k > 0. Therefore, f is a constant. �

As the special case of Theorem 1.3, we obtain two corollaries in the following.

Corollary 4.7. Let φ and ϕ be bounded radial functions. TφBϕ = BϕTφ holds if and only if φ = 0 or f
is constant.

Corollary 4.8. Let φ be a bounded radial function and p a non-negative integer. Suppose f is analytic
in L∞(D). Then, T f Beipθφ = BeipθφT f holds if and only if φ = 0 or f is constant.

5. Conclusions

In this research, we obtain the following characterizations for the commuting Toeplitz operators and
H-Toeplitz operators on the Bergman space.

(1) Suppose p1, p2, q1, q2 are positive integers, f = a1wp1 + a2wp2 , g = b1wq1 + b2wq2 . Then,
B f Bg = BgB f if and only if there exist α, β ∈ C, |α| + |β| , 0 such that α f + βg = 0.
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(2) Suppose f is a bounded harmonic function on D. Let p be a non-negative integer. Then Bwp B f =

B f Bwp if and only if there exist c ∈ C, such that f = cwp.
(3) Let φ be a bounded radial function and p be a non-negative integer. Suppose

f =
∑
k≥0

eikθϕk(r) ∈ L∞(D),

where each ϕk is a bounded radial function. Then, T f Beipθφ = BeipθφT f holds if and only if φ = 0 or f is
a constant.
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