In this paper, we establish a mass formula for self-orthogonal codes, quasi self-dual codes, and self-dual codes over commutative non-unital rings $ {{\mathit {I}_p}} = \left < a, b | pa = pb = 0, a^2 = b, ab = 0 \right > $, where $ p $ is an odd prime. We also give a classification of the three said classes of codes over $ {{\mathit {I}_p}} $ where $ p = 3, 5, $ and $ 7 $, with lengths up to $ 3 $.
Citation: Adel Alahmadi, Altaf Alshuhail, Patrick Solé. The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative ring[J]. AIMS Mathematics, 2023, 8(10): 24367-24378. doi: 10.3934/math.20231242
In this paper, we establish a mass formula for self-orthogonal codes, quasi self-dual codes, and self-dual codes over commutative non-unital rings $ {{\mathit {I}_p}} = \left < a, b | pa = pb = 0, a^2 = b, ab = 0 \right > $, where $ p $ is an odd prime. We also give a classification of the three said classes of codes over $ {{\mathit {I}_p}} $ where $ p = 3, 5, $ and $ 7 $, with lengths up to $ 3 $.
[1] | A. Alahmadi, A. Altassan, W. Basaffar, A. Bonnecaze, H. Shoaib, P. Solé, Quasi type IV codes over a non-unital ring, Appl. Algebra Eng. Commun. Comput., 32 (2021), 217–228. |
[2] | A. Alahmadi, A. Melaibari, P. Solé, Duality of codes over non-unital rings of order four, IEEE Access, 11 (2023), 53120–53133. https://doi.org/10.1109/ACCESS.2023.3261131 doi: 10.1109/ACCESS.2023.3261131 |
[3] | J. M. P. Balmaceda, R. A. L. Betty, F. R. Nemenzo, Mass formula for self-dual codes over $Z_{p^2}$, Discrete Math., 308 (2008), 2984–3002. https://doi.org/10.1016/j.disc.2007.08.024 doi: 10.1016/j.disc.2007.08.024 |
[4] | W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: the user language, J. Symb. Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125 |
[5] | A. R. Calderbank, E. M. Rains, P. M. Shor, N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inf. Theory, 44 (1998), 1369–1387. https://doi.org/10.1109/18.681315 doi: 10.1109/18.681315 |
[6] | W. Choi, Mass formula of self-dual codes over Galois rings $GR(p^2, 2)$, Korean J. Math., 24 (2016), 751–764. https://doi.org/10.11568/kjm.2016.24.4.751 doi: 10.11568/kjm.2016.24.4.751 |
[7] | J. H. Conway, V. Pless, On the enumeration of self-dual codes, J. Comb. Theory Ser. A, 28 (1980), 26–53. https://doi.org/10.1016/0097-3165(80)90057-6 doi: 10.1016/0097-3165(80)90057-6 |
[8] | L. E. Danielsen, On the classification of Hermitian self-dual additive codes over $GF(9)$, IEEE Trans. Inf. Theory, 58 (2012), 5500–5511. https://doi.org/10.1109/TIT.2012.2196255 doi: 10.1109/TIT.2012.2196255 |
[9] | B. Fine, Classification of finite rings of order $p^2$, Math. Mag., 66 (1993), 248–252. https://doi.org/10.2307/2690742 doi: 10.2307/2690742 |
[10] | P. Gaborit, Mass formulas for self-dual codes over $\mathbb{Z}_4$ and $ \mathbb{F}_p +u \mathbb{F}_p$ rings, IEEE Trans. Inf. Theory, 42 (1996), 1222–1228. https://doi.org/10.1109/18.508845 doi: 10.1109/18.508845 |
[11] | K. H. Kim, Y. H. Park, The mass formula of self-orthogonal codes over ${GF (q)} $, Korean J. Math., 25 (2017), 201–209. https://doi.org/10.11568/kjm.2017.25.2.201 doi: 10.11568/kjm.2017.25.2.201 |
[12] | J. S. Leon, V. Pless, N. J. A. Sloane, Self-dual codes over $GF (5)$, J. Comb. Theory Ser. A, 32 (1982), 178–194. https://doi.org/10.1016/0097-3165(82)90019-X doi: 10.1016/0097-3165(82)90019-X |
[13] | F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, North-Holland, 1977. |
[14] | C. L. Mallows, V. Pless, N. J. A. Sloane, Self-dual codes over ${GF}(3)$, SIAM J. Appl. Math., 31 (1976), 649–666. |
[15] | E. M. Rains, N. J. A. Sloane, Self-dual codes, In: V. S. Pless, W. C. Hufman, Handbook of coding theory, I, North Holland, 1998. |
[16] | R. Raghavendran, A class of finite rings, Compos. Math., 22 (1970), 49–57. |
[17] | M. Shi, A. Alahmadi, P. Solé, Codes and rings: theory and practice, Academic Press, 2017. https://doi.org/10.1016/C2016-0-04429-7 |
[18] | P. Solé, Codes over rings, World Scientific, 2008. |