Spectral relationships explain many physical phenomena, especially in quantum physics and astrophysics. Therefore, in this paper, we first attempt to derive spectral relationships in position and time for an integral operator with a singular kernel. Second, using these relations to solve a mixed integral equation (MIE) of the second kind in the space $ {L}_{2}\left[-\mathrm{1, 1}\right]\times C\left[0, T\right], T < 1. $ The way to do this is to derive a general principal theorem of the spectral relations from the term of the Volterra-Fredholm integral equation (V-FIE), with the help of the Chebyshev polynomials (CPs), and then use the results in the general MIE to discuss its solution. More than that, some special and important cases will be devised that help explain many phenomena in the basic sciences in general. Here, the FI term is considered in position, in $ {L}_{2}\left[-\mathrm{1, 1}\right], $ and its kernel takes a logarithmic form multiplied by a general continuous function. While the VI term in time, in $ C\left[0, T\right], T < 1, $ and its kernels are smooth functions. Many numerical results are considered, and the estimated error is also established using Maple 2022.
Citation: Sharifah E. Alhazmi, M. A. Abdou, M. Basseem. Physical phenomena of spectral relationships via quadratic third kind mixed integral equation with discontinuous kernel[J]. AIMS Mathematics, 2023, 8(10): 24379-24400. doi: 10.3934/math.20231243
Spectral relationships explain many physical phenomena, especially in quantum physics and astrophysics. Therefore, in this paper, we first attempt to derive spectral relationships in position and time for an integral operator with a singular kernel. Second, using these relations to solve a mixed integral equation (MIE) of the second kind in the space $ {L}_{2}\left[-\mathrm{1, 1}\right]\times C\left[0, T\right], T < 1. $ The way to do this is to derive a general principal theorem of the spectral relations from the term of the Volterra-Fredholm integral equation (V-FIE), with the help of the Chebyshev polynomials (CPs), and then use the results in the general MIE to discuss its solution. More than that, some special and important cases will be devised that help explain many phenomena in the basic sciences in general. Here, the FI term is considered in position, in $ {L}_{2}\left[-\mathrm{1, 1}\right], $ and its kernel takes a logarithmic form multiplied by a general continuous function. While the VI term in time, in $ C\left[0, T\right], T < 1, $ and its kernels are smooth functions. Many numerical results are considered, and the estimated error is also established using Maple 2022.
[1] | A. R. Jan, An asymptotic model for solving mixed integral equation in position and time, J. Math.-UK, 2022 (2022), 8063971. https://doi.org/10.1155/2022/8063971 doi: 10.1155/2022/8063971 |
[2] | I. V. Boykov, V. A. Roudnev, A. I. Boykova, O. A. Baulina, New iterative method for solving linear and nonlinear hypersingular integral equations, Appl. Numer. Math., 127 (2018), 280–305. https://doi.org/10.1016/j.apnum.2018.01.010 doi: 10.1016/j.apnum.2018.01.010 |
[3] | J. Biazar, H. Ebrahimi, A numerical algorithm for a class of non-linear fractional Volterra integral equations via modified hat functions, J. Integral Equations Applications, 34 (2022), 295–316. https://doi.org/10.1216/jie.2022.34.295 doi: 10.1216/jie.2022.34.295 |
[4] | A. Seifi, Numerical solution of certain Cauchy singular integral equations using a collocation scheme, Adv. Differ. Equ., 2020 (2020), 537. https://doi.org/10.1186/s13662-020-02996-0 doi: 10.1186/s13662-020-02996-0 |
[5] | A. R. Jan, Solution of nonlinear mixed integral equation via collocation method basing on orthogonal polynomials, Heliyon, 8 (2022), e11827. https://doi.org/10.1016/j.heliyon.2022.e11827 doi: 10.1016/j.heliyon.2022.e11827 |
[6] | M. Basseem, A. Alalyani, On the solution of quadratic nonlinear integral equation with different singular kernels, Math. Probl. Eng., 2020 (2020), 7856207. https://doi.org/doi.org/10.1155/2020/7856207 |
[7] | R. Ghorbanpoor, J. Saberi-Nadjafia, N. M. A. N. Long, M. Erfanian, Stability and convergence analysis of singular integral equations for unequal arms branch crack problems in plane elasticity, Appl. Math. Model., 103 (2022), 731–749. https://doi.org/10.1016/j.apm.2021.11.009 doi: 10.1016/j.apm.2021.11.009 |
[8] | M. A. Abdou, M. Basseem, Thermopotential function in position and time for a plate weakened by curvilinear hole, Arch. Appl. Mech., 92 (2022), 867–883. https://doi.org/10.1007/s00419-021-02078-x doi: 10.1007/s00419-021-02078-x |
[9] | A. M. Al-Bugami, Singular Hammerstein-Volterra integral equation and its numerical processing, Journal of Applied Mathematics and Physics, 9 (2021), 379–390. https://doi.org/10.4236/jamp.2021.92026. doi: 10.4236/jamp.2021.92026 |
[10] | M. A. Abdou, A. A. Soliman, M. A. Abdel-Aty, On a discussion of Volterra-Fredholm integral equation with discontinuous kernel, J. Egypt. Math. Soc., 28 (2020), 11. https://doi.org/10.1186/s42787-020-00074-8. doi: 10.1186/s42787-020-00074-8 |
[11] | S. E. A. Alhazmi, New model for solving mixed integral equation of the first kind with generalized potential kernel, Journal of Mathematics Research, 9 (2017), 5. https://doi.org/10.5539/jmr.v9n5p18. doi: 10.5539/jmr.v9n5p18 |
[12] | D. S. Mohamed, Application of Lerch polynomials to approximate solution of singular Fredholm integral equations with Cauchy kernel, Appl. Math. Inf. Sci., 16 (2022), 565–574. https://doi.org/10.18576/amis/160409 doi: 10.18576/amis/160409 |
[13] | J. Gao, M. Condon, A. Iserles, Spectral computation of highly oscillatory integral equations in laser theory, J. Comput. Phys., 395 (2019), 351–381. https://doi.org/10.1016/j.jcp.2019.06.045 doi: 10.1016/j.jcp.2019.06.045 |
[14] | M. Lienert, R. Tumulka, A new class of Volterra-type integral equations from relativistic quantum physics, J. Integral Equations Applications, 31 (2019), 535–569. https://doi.org/10.1216/JIE-2019-31-4-535 doi: 10.1216/JIE-2019-31-4-535 |
[15] | R. T. Matoog, Treatments of probability potential function for nuclear integral equation, J. Phys. Math., 8 (2017), 2. https://doi.org/10.4172/2090-0902.1000226 doi: 10.4172/2090-0902.1000226 |
[16] | R. M. Hafez, Y. H. Youssri, Spectral Legendre-Chebyshev treatment lizedof 2D linear and nonlinear mixed Volterra-Fredholm integral equation, Math. Sci. Lett., 9 (2020), 37–47. https://doi.org/10.18576/msl/090204 doi: 10.18576/msl/090204 |
[17] | A. Alalyani, M. A. Abdou, M. Basseem, On a solution of a third kind mixed integro-differential equation with singular kernel using orthogonal polynomial method, J. Appl. Math., 2023 (2023), 5163398. https://doi.org/10.1155/2023/5163398 doi: 10.1155/2023/5163398 |
[18] | S. Noeiaghdam, D. Sidorov, A. M. Wazwaz, N. Sidorov, V. Sizikov, The numerical validation of the adomian decomposition method for solving Volterra integral equation with discontinuous kernels using the CESTAC method, Mathematics, 9 (2021), 260. https://doi.org/10.3390/math9030260 doi: 10.3390/math9030260 |
[19] | S. Noeiaghdam, D. Sidorov, A. Dreglea, A novel numerical optimality technique to find the optimal results of Volterra integral equation of the second kind with discontinuous kernel, Appl. Numer. Math., 186 (2023), 202–212. https://doi.org/10.1016/j.apnum.2023.01.011 doi: 10.1016/j.apnum.2023.01.011 |
[20] | S. Noeiaghdam, S. Micula, A novel method for solving second kind Volterra integral equations with discontinuous kernel, Mathematics, 9 (2021), 2172. https://doi.org/10.3390/math9172172 doi: 10.3390/math9172172 |
[21] | L. Qiao, J. Guo, W. Qiu, Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type, Comput. Math. Appl., 123 (2022), 89–104. https://doi.org/10.1016/j.camwa.2022.08.014 doi: 10.1016/j.camwa.2022.08.014 |
[22] | R. Wang, L. Qiao, M. A. Zaky, A. S. Hendy, A second-order finite difference scheme for nonlinear tempered fractional integro-differential equations in three dimensions, Numer. Algor., 2023 (2023), 2. https://doi.org/10.1007/s11075-023-01573-2 doi: 10.1007/s11075-023-01573-2 |
[23] | G. Y. Popov, Contact problems for a linearly deformable foundation, Kiev: Odessa, 1982. |
[24] | I. S. Gradstein, I. M. Ryzhik, Tables of integrals, series and products, England: Academic Press, 5 Eds., 1994. |
[25] | M. A. Abdou, M. N. Elhamaky, A. A. Soliman, G. A. Mosa, The behavior of the maximum and minimum error for Fredholm-Volterra integral equations in two-dimensional space, J. Interdiscip. Math., 24 (2021), 2049–2070. https://doi.org/10.1080/09720502.2020.1814497 doi: 10.1080/09720502.2020.1814497 |
[26] | J. I. Frankel, A Galerkin solution to a regularized Cauchy singular integro-differential equation, Q. Appl. Math., L111 (1995), 245–258. |
[27] | G. A. Anastasias, A. Aral, Generalized Picard singular integrals, Comput. Math. Appl., 57 (2009), 821–830. https://doi.org/10.1016/j.camwa.2008.09.026 doi: 10.1016/j.camwa.2008.09.026 |