Research article

Statistical inference of a stochastically restricted linear mixed model

  • Received: 02 May 2023 Revised: 01 August 2023 Accepted: 06 August 2023 Published: 16 August 2023
  • MSC : 15A03, 62H12, 62J05

  • This article compares a predictor with the best linear unbiased predictor (BLUP) for a unified form of all unknown parameters under a stochastically restricted linear mixed model (SRLMM) in terms of the mean squared error matrix (MSEM) criterion. The methodology of block matrix inertias and ranks is employed to compare the MSEMs of these predictors. The comparison results are also demonstrated for a linear mixed model with and without an exact restriction, as well as special cases of the unified form of all unknown parameters in the SRLMM.

    Citation: Nesrin Güler, Melek Eriş Büyükkaya. Statistical inference of a stochastically restricted linear mixed model[J]. AIMS Mathematics, 2023, 8(10): 24401-24417. doi: 10.3934/math.20231244

    Related Papers:

  • This article compares a predictor with the best linear unbiased predictor (BLUP) for a unified form of all unknown parameters under a stochastically restricted linear mixed model (SRLMM) in terms of the mean squared error matrix (MSEM) criterion. The methodology of block matrix inertias and ranks is employed to compare the MSEMs of these predictors. The comparison results are also demonstrated for a linear mixed model with and without an exact restriction, as well as special cases of the unified form of all unknown parameters in the SRLMM.



    加载中


    [1] H. Haupt, W. Oberhofer, Stochastic response restrictions, J. Multivariate Anal., 95 (2005), 66–75. https://doi.org/10.1016/j.jmva.2004.08.006 doi: 10.1016/j.jmva.2004.08.006
    [2] X. Ren, Corrigendum to "On the equivalence of the BLUEs under a general linear model and its restricted and stochastically restricted models" [Stat. Probabil. Lett. 90 (2014) 1–10], Stat. Probabil. Lett., 104 (2015), 181–185. https://doi.org/10.1016/j.spl.2015.05.004 doi: 10.1016/j.spl.2015.05.004
    [3] J. K. Baksalary, R. Kala, Best linear unbiased estimation in the restricted general linear model, Series Statistics, 10 (1979), 27–35. https://doi.org/10.1080/02331887908801464 doi: 10.1080/02331887908801464
    [4] J. S. Chipman, M. M. Rao, The treatment of linear restrictions in regression analysis, Econometrica, 32 (1964), 198–209. https://doi.org/10.2307/1913745 doi: 10.2307/1913745
    [5] W. T. Dent, On restricted estimation in linear models, J. Econometrics, 12 (1980), 49–58. https://doi.org/10.1016/0304-4076(80)90052-4 doi: 10.1016/0304-4076(80)90052-4
    [6] N. Güler, M. E. Büyükkaya, Further remarks on constrained over-parameterized linear models, Stat. Papers, 2023 (2023), 01426. https://doi.org/10.1007/s00362-023-01426-z doi: 10.1007/s00362-023-01426-z
    [7] C. R. Hallum, T. O. Lewis, T. L. Boullion, Estimation in the restricted general linear model with a positive semidefinite covariance matrix, Commun. Stat., 1 (1973), 157–166. https://doi.org/10.1080/03610927308827014 doi: 10.1080/03610927308827014
    [8] B. Jiang, Y. Tian, On best linear unbiased estimation and prediction under a constrained linear random-effects model, J. Ind. Manag. Optim., 19 (2023), 852–867. https://doi.org/10.3934/jimo.2021209 doi: 10.3934/jimo.2021209
    [9] H. Jiang, J. Qian, Y. Sun, Best linear unbiased predictors and estimators under a pair of constrained seemingly unrelated regression models, Stat. Probabil. Lett., 158 (2020), 108669. https://doi.org/10.1016/j.spl.2019.108669 doi: 10.1016/j.spl.2019.108669
    [10] W. Li, Y. Tian, R. Yuan, Statistical analysis of a linear regression model with restrictions and superfluous variables, J. Ind. Manag. Optim., 19 (2023), 3107-3127. https://doi.org/10.3934/jimo.2022079 doi: 10.3934/jimo.2022079
    [11] C. Lu, Y. Sun, Y. Tian, A comparison between two competing fixed parameter constrained general linear models with new regressors, Statistics, 52 (2018), 769–781. https://doi.org/10.1080/02331888.2018.1469021 doi: 10.1080/02331888.2018.1469021
    [12] T. Mathew, A note on best linear unbiased estimation in the restricted general linear model, Series Statistics, 14 (1983), 3–6. https://doi.org/10.1080/02331888308801679 doi: 10.1080/02331888308801679
    [13] C. A. McGilchrist, C. W. Aisbett, Restricted BLUP for mixed linear models, Biometrical J., 33 (1991), 131–141. https://doi.org/10.1002/bimj.4710330202 doi: 10.1002/bimj.4710330202
    [14] Y. Tian, J. Wang, Some remarks on fundamental formulas and facts in the statistical analysis of a constrained general linear model, Commun. Stat. Theor. M., 49 (2020), 1201–1216. https://doi.org/10.1080/03610926.2018.1554138 doi: 10.1080/03610926.2018.1554138
    [15] S. J. Haslett, S. Puntanen, A note on the equality of the BLUPs for new observations under two linear models, Acta Comment. Univ. Tartu. Math., 14 (2010), 27–33. https://doi.org/10.12697/ACUTM.2010.14.03 doi: 10.12697/ACUTM.2010.14.03
    [16] H. Theil, On the use of incomplete prior information in regression analysis, J. Am. Stat. Assoc., 58 (1963), 401–414. https://doi.org/10.2307/2283275 doi: 10.2307/2283275
    [17] H. Theil, A. S. Goldberger, On pure and mixed statistical etimation in economics, Int. Econ. Rev., 2 (1961), 65–78. https://doi.org/10.2307/2525589 doi: 10.2307/2525589
    [18] J. Xu, H. Yang, Estimation in singular linear models with stochastic linear restrictions, Commun. Stat. Theor. M., 36 (2007), 1945–1951. https://doi.org/10.1080/03610920601126530 doi: 10.1080/03610920601126530
    [19] M. E. Büyükkaya, Characterizing relationships between BLUPs under linear mixed model and some associated reduced models, Commun. Stat. Simul. C., 2022 (2022), 2115071. https://doi.org/10.1080/03610918.2022.2115071 doi: 10.1080/03610918.2022.2115071
    [20] B. Dong, W. Guo, Y. Tian, On relations between BLUEs under two transformed linear models, J. Multivariate Anal., 131 (2014), 279–292. https://doi.org/10.1016/j.jmva.2014.07.005 doi: 10.1016/j.jmva.2014.07.005
    [21] N. Güler, On relations between BLUPs under two transformed linear random-effects models, Commun. Stat. Simul. C., 51 (2022), 5099–5125. https://doi.org/10.1080/03610918.2020.1757709 doi: 10.1080/03610918.2020.1757709
    [22] N. Güler, M. E. Büyükkaya, Notes on comparison of covariance matrices of BLUPs under linear random-effects model with its two sub-sample models, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 2993–3002. https://doi.org/10.1007/s40995-019-00785-3 doi: 10.1007/s40995-019-00785-3
    [23] N. Güler, M. E. Büyükkaya, Rank and inertia formulas for covariance matrices of BLUPs in general linear mixed models, Commun. Stat. Theor. M., 50 (2021), 4997–5012. https://doi.org/10.1080/03610926.2019.1599950 doi: 10.1080/03610926.2019.1599950
    [24] N. Güler, M. E. Büyükkaya, Some remarks on comparison of predictors in seemingly unrelated linear mixed models, Appl. Math., 67 (2022), 525–542. https://doi.org/10.21136/AM.2021.0366-20 doi: 10.21136/AM.2021.0366-20
    [25] N. Güler, M. E. Büyükkaya, Inertia and rank approach in transformed linear mixed models for comparison of BLUPs, Commun. Stat. Theor. M., 52 (2023), 3108–3123. https://doi.org/10.1080/03610926.2021.1967397 doi: 10.1080/03610926.2021.1967397
    [26] N. Güler, M. E. Büyükkaya, M. Yiğit, Comparison of covariance matrices of predictors in seemingly unrelated regression models, Indian J. Pure Appl. Math., 53 (2022), 801–809. https://doi.org/10.1007/s13226-021-00174-w doi: 10.1007/s13226-021-00174-w
    [27] Y. Tian, Some equalities and inequalities for covariance matrices of estimators under linear model, Stat. Papers, 58 (2017), 467–484. https://doi.org/10.1007/s00362-015-0707-x doi: 10.1007/s00362-015-0707-x
    [28] Y. Tian, W. Guo, On comparison of dispersion matrices of estimators under a constrained linear model, Stat. Methods Appl., 25 (2016), 623–649. https://doi.org/10.1007/s10260-016-0350-2 doi: 10.1007/s10260-016-0350-2
    [29] M. A. E. Abdelrahman, M. A. Sohaly, S. I. Ammar, Y. F. Alharbi, The deterministic and stochastic solutions for the nonlinear Phi-4 equation, Int. J. Nonlin. Sci. Num., 23 (2022), 823–832. https://doi.org/10.1515/ijnsns-2022-2272 doi: 10.1515/ijnsns-2022-2272
    [30] H. G. Abdelwahed, A. F. Alsarhana, E. K. El-Shewy, M. A. E. Abdelrahman, The stochastic structural modulations in collapsing Maccari's model solitons, Fractal Fract., 7 (2023), 290. https://doi.org/10.3390/fractalfract7040290 doi: 10.3390/fractalfract7040290
    [31] Y. F. Alharbi, E. K. El-Shewy, M. A. E. Abdelrahman, New and effective solitary applications in Schrödinger equation via Brownian motion process with physical coefficients of fiber optics, AIMS Mathematics, 8 (2023), 4126–4140. https://doi.org/10.3934/math.2023205 doi: 10.3934/math.2023205
    [32] F. Mirzaee, S. Rezaei, N. Samadyar, Solving one-dimensional nonlinear stochastic Sine-Gordon equation with a new meshfree technique, Int. J. Numer. Model. El., 34 (2021), e2856. https://doi.org/10.1002/jnm.2856 doi: 10.1002/jnm.2856
    [33] F. Mirzaee, N. Samadyar, Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection-diffusion equations, Eng. Comput., 36 (2020), 1673–1686. https://doi.org/10.1007/s00366-019-00789-y doi: 10.1007/s00366-019-00789-y
    [34] E. K. El-Shewy, Y. F. Alharbi, M. A. E. Abdelrahman, On the dynamical stochastic electrostatic noise fluctuations in Zakharov model, Chaos Soliton. Fract., 170 (2023), 113324. https://doi.org/10.1016/j.chaos.2023.113324 doi: 10.1016/j.chaos.2023.113324
    [35] Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263–296. https://doi.org/10.1016/j.laa.2010.02.018 doi: 10.1016/j.laa.2010.02.018
    [36] Y. Tian, Solving optimization problems on ranks and inertias of some constrained nonlinear matrix functions via an algebraic linearization method, Nonlinear Anal. Theor., 75 (2012), 717–734. https://doi.org/10.1016/j.na.2011.09.003 doi: 10.1016/j.na.2011.09.003
    [37] C. R. Rao, Representations of best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix, J. Multivariate Anal., 3 (1973), 276–292. https://doi.org/10.1016/0047-259X(73)90042-0 doi: 10.1016/0047-259X(73)90042-0
    [38] I. S. Alalouf, G. P. H. Styan, Characterizations of estimability in the general linear model, Ann. Statist., 7 (1979), 194–200. https://doi.org/10.1214/aos/1176344564 doi: 10.1214/aos/1176344564
    [39] C. Lu, S. Gan, Y. Tian, Some remarks on general linear model with new regressors, Stat. Probabil. Lett., 97 (2015), 16–24. https://doi.org/10.1016/j.spl.2014.10.015 doi: 10.1016/j.spl.2014.10.015
    [40] A. S. Goldberger, Best linear unbiased prediction in the generalized linear regression model, J. Am. Stat. Assoc., 57 (1962), 369–375. https://doi.org/10.2307/2281645 doi: 10.2307/2281645
    [41] S. Puntanen, G. P. H. Styan, J. Isotalo, Matrix tricks for linear statistical models: Our personal top twenty, 1 Eds., Heidelberg: Springer Berlin, 2011. https://doi.org/10.1007/978-3-642-10473-2
    [42] C. R. Rao, Shalabh, H. Toutenburg, C. Heumann, Linear models and generalizations: Least squares and alternatives, 3 Eds., Heidelberg: Springer Berlin, 2008. https://doi.org/10.1007/978-3-540-74227-2
    [43] H. Yang, H. Ye, K. Xue, A further study ofpredictions in linear mixed models, Commun. Stat. Theor. M., 43 (2014), 4241–4252. https://doi.org/10.1080/03610926.2012.725497 doi: 10.1080/03610926.2012.725497
    [44] H. Drygas, The coordinate-free approach to Gauss-Markov estimation, 1 Eds., Heidelberg: Springer Berlin, 1970. https://doi.org/10.1007/978-3-642-65148-9
    [45] Y. Tian, On properties of BLUEs under general linear regression models, J. Stat. Plan. Infer., 143 (2013), 771–782. https://doi.org/10.1016/j.jspi.2012.10.005 doi: 10.1016/j.jspi.2012.10.005
    [46] D. Sengupta, S. R. Jammalamadaka, Linear models: An integrated approach, Singapore: World Scientific Press, 2003. https://doi.org/10.1142/4674
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(902) PDF downloads(82) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog