Research article

A generalized Liu-type estimator for logistic partial linear regression model with multicollinearity

  • Received: 27 December 2022 Revised: 17 February 2023 Accepted: 27 February 2023 Published: 20 March 2023
  • MSC : 62J07, 62G05, 62F10

  • This paper is concerned with proposing a generalized Liu-type estimator (GLTE) to address the multicollinearity problem of explanatory variable of the linear part in the logistic partially linear regression model. Using the profile likelihood method, we propose the GLTE as a general class of Liu-type estimator, which includes the profile likelihood estimator, the ridge estimator, the Liu estimator and the Liu-type estimator as special cases. The conditional superiority of the proposed GLTE over the other estimators is derived under the asymptotic mean square error matrix (MSEM) criterion. Moreover, the optimal choices of biasing parameters and function of biasing parameter are given. Numerical simulations demonstrate that the proposed GLTE performs better than the existing estimators. An application on a set of real data arising from the study of Indian Liver Patient is shown for illustrating our theoretical results.

    Citation: Dayang Dai, Dabuxilatu Wang. A generalized Liu-type estimator for logistic partial linear regression model with multicollinearity[J]. AIMS Mathematics, 2023, 8(5): 11851-11874. doi: 10.3934/math.2023600

    Related Papers:

  • This paper is concerned with proposing a generalized Liu-type estimator (GLTE) to address the multicollinearity problem of explanatory variable of the linear part in the logistic partially linear regression model. Using the profile likelihood method, we propose the GLTE as a general class of Liu-type estimator, which includes the profile likelihood estimator, the ridge estimator, the Liu estimator and the Liu-type estimator as special cases. The conditional superiority of the proposed GLTE over the other estimators is derived under the asymptotic mean square error matrix (MSEM) criterion. Moreover, the optimal choices of biasing parameters and function of biasing parameter are given. Numerical simulations demonstrate that the proposed GLTE performs better than the existing estimators. An application on a set of real data arising from the study of Indian Liver Patient is shown for illustrating our theoretical results.



    加载中


    [1] T. A. Severini, J. G. Staniswalis, Quasi-likelihood estimation in semiparametric models, J. Am. Stat. Assoc., 89 (1994), 501–511. https://doi.org/10.1080/01621459.1994.10476774 doi: 10.1080/01621459.1994.10476774
    [2] H. Sally, Semiparametric regression in likelihood-based models, J. Am. Stat. Assoc., 89 (1994), 1354–1365. https://doi.org/10.1080/01621459.1994.10476874 doi: 10.1080/01621459.1994.10476874
    [3] H. Liang, Y. S. Qin, X. Y. Zhang, D. Ruppert, Empirical likelihood-based inferences for generalized partially linear models, Scand. J. Stat., 36 (2009), 433–443. https://doi.org/10.1111/j.1467-9469.2008.00632.x doi: 10.1111/j.1467-9469.2008.00632.x
    [4] G. Boente, D. Rodriguez, Robust inference in generalized partially linear models, Comput. Stat. Data An., 54 (2010), 2942–2966. https://doi.org/10.1016/j.csda.2010.05.025 doi: 10.1016/j.csda.2010.05.025
    [5] J. Rahman, S. H. Luo, Y. W. Fan, X. H. Liu, Semiparametric efficient inferences for generalised partially linear models, J. Nonparametr. Stat., 32 (2020), 704–724. https://doi.org/10.1080/10485252.2020.1790557 doi: 10.1080/10485252.2020.1790557
    [6] A. E. Hoerl, R. W. Kennard, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12 (1970), 55–67. https://doi.org/10.1080/00401706.1970.10488634 doi: 10.1080/00401706.1970.10488634
    [7] K. J. Liu, A new class of blased estimate in linear regression, Commun. Stat. Theor. M., 22 (1993), 393–402. https://doi.org/10.1080/03610929308831027 doi: 10.1080/03610929308831027
    [8] K. J. Liu, Using Liu-type estimator to combat collinearity, Commun. Stat. Theor. M., 32 (2003), 1009–1020. https://doi.org/10.1081/STA-120019959 doi: 10.1081/STA-120019959
    [9] F. S. Kurnaz, K. U. Akay, A new Liu-type estimator, Stat. Pap., 56 (2015), 495–517. https://doi.org/10.1007/s00362-014-0594-6 doi: 10.1007/s00362-014-0594-6
    [10] A. Zeinal, The extended two-type parameter estimator in linear regression model, Commun. Stat. Theor. M., 1 (2021), 1. https://doi.org/10.1080/03610926.2021.1916528 doi: 10.1080/03610926.2021.1916528
    [11] M. R. Özkale, S. Kaçiranlar, The restricted and unrestricted two-parameter estimators, Commun. Stat. Theor. M., 36 (2007), 2707–2725. https://doi.org/10.1080/03610920701386877 doi: 10.1080/03610920701386877
    [12] B. M. G. Kibria, K. Mnsson, G. Shukur, Performance of some logistic ridge regression estimators, Comput. Ecom., 40 (2012), 401–414. https://doi.org/10.1007/s10614-011-9275-x doi: 10.1007/s10614-011-9275-x
    [13] D. Inan, B. E. Erdogan, Liu-type logistic estimator, Commun. Stat. Simul. C., 42 (2013), 1578–1586. https://doi.org/10.1080/03610918.2012.667480 doi: 10.1080/03610918.2012.667480
    [14] Y. Asar, A. Genç, Two-parameter ridge estimator in the binary logistic regression, Commun. Stat. Simul. C., 46 (2017), 7088–7099. https://doi.org/10.1080/03610918.2016.1224348 doi: 10.1080/03610918.2016.1224348
    [15] N. Varathan, P. Wijekoon, Modified almost unbiased Liu estimator in logistic regression, Commun. Stat. Simul. C., 50 (2021), 1009–1020. https://doi.org/10.1080/03610918.2019.1626888 doi: 10.1080/03610918.2019.1626888
    [16] E. Ertan, K. U. Akay, A new Liu-type estimator in binary logistic regression models, Commun. Stat. Theor. M., 51 (2022), 4370–4394. https://doi.org/10.1080/03610926.2020.1813777 doi: 10.1080/03610926.2020.1813777
    [17] N. H. Jadhav, On linearized ridge logistic estimator in the presence of multicollinearity, Computation. Stat., 35 (2020), 667–687. https://doi.org/10.1007/s00180-019-00935-6 doi: 10.1007/s00180-019-00935-6
    [18] N. K. Rashad, Z. Y. Algamal, A new ridge estimator for the poisson regression model, Iran. J. Sci. Technol. Tran. Sci., 43 (2019), 2921–2928. https://doi.org/10.1007/s40995-019-00769-3 doi: 10.1007/s40995-019-00769-3
    [19] A. F. Lukman, K. Ayinde, B. M. G. Kibria, E. T. Adewuyi, Modified ridge-type estimator for the gamma regression model, Commun. Stat. Simul. C., 51 (2022), 5009–5023. https://doi.org/10.1080/03610918.2020.1752720 doi: 10.1080/03610918.2020.1752720
    [20] M. Roozbeh, M. Arashi, Feasible ridge estimator in partially linear models, J. Multivariate Anal., 116 (2013), 35–44. https://doi.org/10.1016/j.jmva.2012.11.006 doi: 10.1016/j.jmva.2012.11.006
    [21] J. B. Wu, Performance of the difference-based almost unbiased Liu estimator in partial linear model, J. Stat. Comput. Sim., 86 (2016), 2874–2887. https://doi.org/10.1080/00949655.2015.1136628 doi: 10.1080/00949655.2015.1136628
    [22] H. Emami, A. Aghamohammadi, Elliptical difference based ridge and Liu type estimators in partial linear measurement error models, Commun. Stat. Theor. M., 50 (2021), 4913–4933. https://doi.org/10.1080/03610926.2018.1472793 doi: 10.1080/03610926.2018.1472793
    [23] F. Akdeniz, M. Roozbeh, Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models, Stat. Pap., 60 (2020), 1717–1739. https://doi.org/10.1007/s00362-017-0893-9 doi: 10.1007/s00362-017-0893-9
    [24] J. Wu, B. M. G. Kibria, A generalized difference-based mixed two-parameter estimator in partially linear models, Commun. Stat. Theor. M., 2022. https://doi.org/10.1080/03610926.2021.2024234 doi: 10.1080/03610926.2021.2024234
    [25] P. McCullagh, J. A. Nelder, Generalized linear models, 2$^{nd}$ edition, New York: Chapman & Hall, 1989.
    [26] C. M. Theobald, Generalizations of mean square error applied to ridge regression, J. R. Stat. Soc. B., 36 (1974), 103–106. https://doi.org/10.1111/j.2517-6161.1974.tb00990.x doi: 10.1111/j.2517-6161.1974.tb00990.x
    [27] R. W. Farebrother, Further results on the mean square error of ridge regression, J. R. Stat. Soc. B., 38 (1976), 248–250. https://doi.org/10.1111/j.2517-6161.1976.tb01588.x doi: 10.1111/j.2517-6161.1976.tb01588.x
    [28] M. Amini, M. Roozbeh, Optimal partial ridge estimation in restricted semiparametric regression models, J. Multivariate Anal., 136 (2015), 26–40. https://doi.org/10.1016/j.jmva.2015.01.005 doi: 10.1016/j.jmva.2015.01.005
    [29] M. Roozbeh, Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion, Comput. Stat. Data An., 117 (2018), 45–61. https://doi.org/10.1016/j.csda.2017.08.002 doi: 10.1016/j.csda.2017.08.002
    [30] D. W. Scott, Multivariate density estimation: theory, practice, and visualization, Hoboken: Wiley, 1992.
    [31] ILPD (Indian Liver Patient Dataset) Data Set, Machine learning repository, 2012. Available from: http://archive.ics.uci.edu/ml
    [32] H. Hartatik, M. B. Tamam, A. Setyanto, Prediction for diagnosing liver disease in patients using KNN and Naïve Bayes algorithms, ICORIS, 2020, 20288260. https://doi.org/10.1109/ICORIS50180.2020.9320797 doi: 10.1109/ICORIS50180.2020.9320797
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1424) PDF downloads(89) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog