In this paper, we investigate the problems of sliding mode observer design and observer-based integral sliding mode control for a class of singular bio-economic systems with stochastic disturbance. Initially, we establish a bio-economic system with the alien invasive species and stochastic disturbance. Then, a new integral sliding surface is constructed based on the multiplication of sliding variables and negative definite matrix for the error system. The advantage of this method is that it not only stabilizes the sliding variables, but also eliminates the restrictive assumptions often used in sliding mode control of the singular bio-economic systems with stochastic disturbance. Finally, an augmented system is constructed and the linear matrix inequality technique is used to determine the admissibility of the mean square exponent. Furthermore, an observer-based sliding mode controller is designed so that the reachability conditions can be guaranteed. The validity of the results is verified by a numerical simulation.
Citation: Yi Zhang, Yuanpeng Zhao, Na Li, Yingying Wang. Observer-based sliding mode controller design for singular bio-economic system with stochastic disturbance[J]. AIMS Mathematics, 2024, 9(1): 1472-1493. doi: 10.3934/math.2024072
In this paper, we investigate the problems of sliding mode observer design and observer-based integral sliding mode control for a class of singular bio-economic systems with stochastic disturbance. Initially, we establish a bio-economic system with the alien invasive species and stochastic disturbance. Then, a new integral sliding surface is constructed based on the multiplication of sliding variables and negative definite matrix for the error system. The advantage of this method is that it not only stabilizes the sliding variables, but also eliminates the restrictive assumptions often used in sliding mode control of the singular bio-economic systems with stochastic disturbance. Finally, an augmented system is constructed and the linear matrix inequality technique is used to determine the admissibility of the mean square exponent. Furthermore, an observer-based sliding mode controller is designed so that the reachability conditions can be guaranteed. The validity of the results is verified by a numerical simulation.
[1] | C. Leal-Ramirez, O. Castillo, P. Melin, H. Echavarria-Heras, A fuzzy cellular prey-predator model for pest control under sustainable bio-economic equilibrium: A formal description and simulation analysis study, Appl. Math. Model., 39 (2015), 1794–1803. https://doi.org/10.1016/j.apm.2014.09.037 doi: 10.1016/j.apm.2014.09.037 |
[2] | Z. H. Jin, Q. L. Zhang, X. Y. Meng, The stability analysis and control of uncertain singular biological economic system with invasion of alien species based on sliding mode control, J. Intel. Fuzzy Syst., 34 (2018), 4079–4091. https://doi.org/10.3233/JIFS-171496 doi: 10.3233/JIFS-171496 |
[3] | S. H. Zhang, Q. L. Zhang, L. Qiao, J. C. Ren, C. Liu, Fuzzy optimal guaranteed cost control of a single species model with stagestructure in toxic environment, J. Intel. Fuzzy Syst., 33 (2017), 2415–2426. https://doi.org/10.3233/JIFS-17556 doi: 10.3233/JIFS-17556 |
[4] | R. Sakthivel, R. Kanagaraj, C. Wang, P. Selvaraj, S. M. Anthoni, Non-fragile sampled-data guaranteed cost control for bio-economic fuzzy singular Markovian jump systems, IET Control Theory A., 13 (2019), 279–287. https://doi.org/10.1049/iet-cta.2018.5285 doi: 10.1049/iet-cta.2018.5285 |
[5] | S. M. S. Rana, Bifurcations and chaos control in a discrete-time predator-prey system of leslie type, J. Appl. Anal. Comput., 9 (2019), 31–44. https://doi.org/10.11948/2019.31 doi: 10.11948/2019.31 |
[6] | L. R. Huang, D. H. Cai, W. Y. Liu, Optimal harvesting of an abstract population model with interval biological parameters, Adv. Differ. Equ., 285 (2020), 1–17. https://doi.org/10.1186/s13662-020-02755-1 doi: 10.1186/s13662-020-02755-1 |
[7] | L. R. Susana, A. Leelamani, Resilient fuzzy control design of singular stochastic biological economic fishery model, IET Control Theory A., 15 (2021), 1214–1229. https://doi.org/10.1049/cth2.12117 doi: 10.1049/cth2.12117 |
[8] | W. Gong, Z. Wang, Stability of nonlinear population systems with individual scale and migration, AIMS Math., 153 (2023), 125–147. https://doi.org/10.3934/math.2023006 doi: 10.3934/math.2023006 |
[9] | K. Antwi-Fordjour, R. D. Parshad, H. E. Thompson, S. B. Westaway, Fear-driven extinction and (de)stabilization in a predator-prey model incorporating prey herd behavior and mutual interference, AIMS Math., 8 (2023), 3353–3377. https://doi.org/10.3934/math.2023173 doi: 10.3934/math.2023173 |
[10] | L. Wu, H. Zheng, S. Zhang, Dynamics of a non-autonomous predator-prey system with Hassell-Varley-Holling Ⅱ function response and mutual interference, AIMS Math., 6 (2021), 6033–6049. https://doi.org/10.3934/math.2021355 doi: 10.3934/math.2021355 |
[11] | N. Li, Y. Q. Han, W. J. He, S. L. Zhu, Control design for stochastic nonlinear systems with full-state constraints and input delay: A new adaptive approximation methods, Int. J. Control Autom., 20 (2022), 2768–2778. https://doi.org/10.1007/s12555-021-0451-z doi: 10.1007/s12555-021-0451-z |
[12] | W. J. Chang, Y. M. Huang, Y. H. Lin, Observer-Based fuzzy control of uncertain nonlinear singular systems under multi-performance requirements, Mathematics, 11 (2023), 1–21. https://doi.org/10.3390/math11122632 doi: 10.3390/math11122632 |
[13] | O. Alshammari, M. Kchaou, H. Jerbi, S. B. Aoun, V. Leiva, A fuzzy design for a sliding mode observer-based control scheme of Takagi-Sugeno Markov jump systems under imperfect premise matching with bio-economic and industrial applications, Mathematics, 10 (2022), 1–28. https://doi.org/10.1007/s12555-013-0169-7 doi: 10.1007/s12555-013-0169-7 |
[14] | X. N. Yu, L. Y. Hao, X. L. Wang, Fault tolerant control for an unmanned surface vessel based on integral sliding mode state feedback control, Int. J. Control Autom., 20 (2022), 2514–2522. https://doi.org/10.1007/s12555-021-0526-x doi: 10.1007/s12555-021-0526-x |
[15] | Y. Wang, M. S. Chen, Fixed-time disturbance observer-based sliding mode control for mismatched uncertain systems, Int. J. Control Autom., 20 (2022), 2792–2804. https://doi.org/10.1007/s12555-021-0097-x doi: 10.1007/s12555-021-0097-x |
[16] | S. Singh, S. Lee, Design of integral sliding mode control using decoupled disturbance compensator with mismatched disturbances, Int. J. Control Autom., 19 (2021), 3264–3272. https://doi.org/10.1007/s12555-020-0834-6 doi: 10.1007/s12555-020-0834-6 |
[17] | A. Karami-Mollaee, H. Tirandaz, Adaptive fuzzy fault tolerant control using dynamic sliding mode, Int. J. Control Autom., 16 (2018), 360–367. https://doi.org/10.1007/s12555-017-0066-6 doi: 10.1007/s12555-017-0066-6 |
[18] | O. A. Sultanov, Stochastic stability of a dynamical system perturbed by white noise, Math. Notes, 101 (2017), 149–156. https://doi.org/10.1134/S0001434617010151 doi: 10.1134/S0001434617010151 |
[19] | W. H. Zhang, Y. Zhao, L. Sheng, Some remarks on stability of stochastic singular systems with state-dependent noise, Automatica, 51 (2015), 273–277. https://doi.org/10.1016/j.automatica.2014.10.044 doi: 10.1016/j.automatica.2014.10.044 |
[20] | C. S. Han, L. G. Wu, P. Shi, Q. S. Zeng, Passivity and passification of T-S fuzzy descriptor systems with stochastic perturbation and time delay, IET Control Theory A., 7 (2013), 1711–1724. https://doi.org/10.1049/iet-cta.2013.0211 doi: 10.1049/iet-cta.2013.0211 |
[21] | J. Wang, C. Y. Yang, J. W. Xia, Z. G. Wu, H. Shen, Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol, IEEE T. Fuzzy Syst., 30 (2022), 1889–1899. https://doi.org/10.1109/TFUZZ.2021.3070125 doi: 10.1109/TFUZZ.2021.3070125 |
[22] | H. Y. Li, P. Shi, D. Y. Yao, L. G. Wu, Observer-based adaptive sliding mode control for nonlinear Markovian jump systems, Automatica, 64 (2016), 133–142. https://doi.org/10.1016/j.automatica.2015.11.007 doi: 10.1016/j.automatica.2015.11.007 |
[23] | M. Liu, L. X. Zhang, P. Shi, H. R. Karimi, Robust control of stochastic systems against bounded disturbances with application to flight control, IEEE T. Ind. Electron., 61 (2014), 1504–1515. https://doi.org/10.1109/TIE.2013.2258293 doi: 10.1109/TIE.2013.2258293 |
[24] | L. G. Wu, D. W. C. Ho, C. W. Li, Sliding mode control of switched hybrid systems with stochastic perturbation, Syst. Control Lett., 60 (2011), 531–539. https://doi.org/10.1016/j.sysconle.2011.04.007 doi: 10.1016/j.sysconle.2011.04.007 |
[25] | Q. Gao, G. Feng, L. Liu, J. B. Qiu, An ISMC approach to robust stabilization of uncertain stochastic time-delay systems, IEEE T. Ind. Electron., 61 (2014), 6986–6994. https://doi.org/10.1109/TIE.2014.2314057 doi: 10.1109/TIE.2014.2314057 |
[26] | S. Q. Liu, L. S. Chen, G. L. Luo, Extinction and permanence in competitive stage structured system with time-delays, Nonlinear Anal., 51 (2002), 1347–1361. https://doi.org/10.1016/S0362-546X(01)00901-4 doi: 10.1016/S0362-546X(01)00901-4 |
[27] | X. A. Zhang, L. S. Chen, A. U. Neumann, The stage-structured predator-prey model and optimal harvesting policy, Math. Biosci., 168 (2000), 201–210. https://doi.org/10.1016/S0025-5564(00)00033-X doi: 10.1016/S0025-5564(00)00033-X |
[28] | Q. L. Zhang, C. Liu, X. Zhang, Complexity, analysis and control of singular biological systems, Springer-Verlag, 2012. https://doi.org/10.1007/978-1-4471-2303-3 |
[29] | G. Q. Yang, D. B. Tong, Q. Y. Chen, W. E. Zhou, P. Shi, Fixed-time synchronization and energy consumption for Kuramoto-Oscillator networks with multilayer distributed control, IEEE T. Ind. Electron., 70 (2021), 1555–1559. https://doi.org/10.1109/TCSII.2022.3221477 doi: 10.1109/TCSII.2022.3221477 |
[30] | J. W. Li, Y. Zhang, Y. Y. Nie, S. Yang, Adaptive fault-tolerant control of alien species invasion based on sliding mode, Int. J. Control Autom., 21 (2023), 1–11. https://doi.org/10.1007/s12555-022-0369-0 doi: 10.1007/s12555-022-0369-0 |
[31] | C. Xu, D. B. Tong, Q. Y. Chen, W. E. Zhou, P. Shi, Exponential stability of Markovian jumping systems via adaptive sliding mode control, IEEE T. Ind. Electron., 51 (2021), 954–964. https://doi.org/10.1109/TSMC.2018.2884565 doi: 10.1109/TSMC.2018.2884565 |
[32] | Y. Zhang, N. Li, J. Y. Zhang, Stochastic stability and Hopf bifurcation analysis of a singular bio-economic model with stochastic fluctuations, Int. J. Biomath., 12 (2019), 1–16. https://doi.org/10.1142/S1793524519500839 doi: 10.1142/S1793524519500839 |
[33] | D. B. Tong, B. Ma, Q. Y. Chen, Y. B. Wei, P. Shi, Finite-time synchronization and energy consumption prediction for multilayer fractional-order networks, Int. J. Biomath., 70 (2023), 2176–2180. https://doi.org/10.1109/TCSII.2022.3233420 doi: 10.1109/TCSII.2022.3233420 |
[34] | N. Priyadarshi, P. Sanjeevikumar, M. S. Bhaskar, F. Azam, I. B. M. Taha, M. G. Hussien, An adaptive TS-fuzzy model based RBF neural network learning for grid integrated photovoltaic applications, IET Renew. Power Gen., 16 (2022), 2176–2180. https://doi.org/10.1049/rpg2.12505 doi: 10.1049/rpg2.12505 |
[35] | F. Wu, Y. L. Huang, Finite-time synchronization and ${H_{\infty}}$ synchronization of coupled complex-valued memristive neural networks with and without parameter uncertainty, Neurocomputing, 469 (2022), 163–179. https://doi.org/10.1016/j.neucom.2021.10.067 doi: 10.1016/j.neucom.2021.10.067 |