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Abstract: In this paper, we investigate the problems of sliding mode observer design and observer-
based integral sliding mode control for a class of singular bio-economic systems with stochastic
disturbance. Initially, we establish a bio-economic system with the alien invasive species and stochastic
disturbance. Then, a new integral sliding surface is constructed based on the multiplication of sliding
variables and negative definite matrix for the error system. The advantage of this method is that it
not only stabilizes the sliding variables, but also eliminates the restrictive assumptions often used in
sliding mode control of the singular bio-economic systems with stochastic disturbance. Finally, an
augmented system is constructed and the linear matrix inequality technique is used to determine the
admissibility of the mean square exponent. Furthermore, an observer-based sliding mode controller is
designed so that the reachability conditions can be guaranteed. The validity of the results is verified by
a numerical simulation.
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1. Introduction

In recent years, human beings have been faced with the problem of resource shortage and
environmental deterioration. Therefore, more and more people are interested in the analysis of
predator-prey bio-economic systems. The authors proposed a singular bio-economic system with the
invasion alien species in [1]. The stability and sliding mode control of a single bio-economic system
was analyzed in [2]. The fuzzy stochastic optimal guaranteed cost control of bio-economic singular
Markovian jump systems (MJSs) was studied in [3]. A singular bio-economic MJS with commodity
prices as Markov chains was proposed in [4]. The exponential stability in mean square for MJSs was
discussed in [31]. The problem of bifurcation and control for the biological economic system had
been considered in [5]. The optimal harvest of the abstract population model with interval biological
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parameters was proposed in [6]. The optimal controller was designed by Pontryagin’s maximum
principle to obtain the optimal harvest. An elastic fuzzy controller was designed in [7] for a class
of singular stochastic bio-economic fishery models with variable economic benefits. The fixed-time
synchronization and energy consumption of Kuramoto-oscillator networks with multilayer distributed
control are studied in [29]. Finite-time synchronization and H∞ synchronization of coupled complex-
valued memristive neural networks (CCVMNNs) with or without parameter uncertainty are analyzed
in [35]. In order to protect the ecological environment and ensure the synchronous development of
economy, it is necessary to research the bio-economic systems.

Particularly, singular system models hold broader applicability in the realm of the bio-economic
systems. In [8], a deterministic two-species predator-prey model with prey herd behavior, mutual
disturbance and the effect of fear was introduced. In [9], the stability of a nonlinear population system
with a weighted total size of scale structure and migration in a polluted environment was studied, where
fertility and mortality depend on the density in different ways. Furthermore, the stability of biological
and population systems was studied in [10]. It can be seen that the application of singular systems
in the field of bioeconomy is worth exploring. In the biological system, it will be interfered by many
noises, which can be divided into Gaussian noise or non Gaussian noise. Among the non Gaussian
noises studied, white noise in stochastic systems is a special problem that needs to be studied. In [11],
a new stochastic average method was used to analyze the impact vibration system with Gaussian white
noise.

Sliding mode control, also known as variable structure control is a kind of special nonlinear
control, and nonlinearity is expressed as control discontinuity. The advantage of sliding mode control
mentioned in [12] is that it can overcome the uncertainty of the system, and has strong robustness to
disturbance and unmodeled dynamics. In recent years, as we learned in [13–16], variable structure
control had been successfully applied in various projects, such as robotics, aerospace, power systems
and so on. In addition, variable structure control had achieved many results through fuzzy sliding
mode control in [17]. The finite-time synchronization (FTS) of the prediction of the synchronization
time and energy consumption is discussed for multilayer fractional-order networks (MFONs) in [33].
Therefore, we will continue to study variable structure control of the singular bio-economic systems.

In practice, biological systems are subject to fluctuations in the natural environment. Most of natural
phenomena are not certain; they are stochastic. Therefore, it is very difficult to predict the dynamics of
biological systems with deterministic methods. Therefore, the stochastic differential equation model
is used to predict various dynamic analyses of biological systems to describe the behavior more in
line with biological population activities. When existing stochastic factors and disturbance from white
noise interfere, the model is changed from a biological model to a singular stochastic model. In [18],
the influence of stochastic disturbance on a dynamic system was studied when white noise persists.
In [19], the stability for stochastic singular systems with state-dependent noise in both continuous-time
and discrete-time cases was discussed. The condition for the existence and uniqueness of the solution
to stochastic singular systems is given. Furthermore, in [20], the stochastic Itô singular system is
transformed into a deterministic standard singular system by means of the H-representation method
and the new sufficient conditions for the stability of systems considered are derived in terms of strict
linear matrix inequalities. In real life, the system state may be difficult to measure due to high cost or
technical limitations. As an alternative method, state observers can overcome this difficulty. In [21], an
observer-based nonlinear state delay system sliding mode controller was designed. H. Y. Li, et al. [22]
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studied observer-based adaptive sliding mode control for nonlinear MJSs. The observer based integral
sliding mode control for stochastic systems was studied in [23] and the state observer was designed.
The constraints of stochastic Itô regular systems were eliminated by designing linear sliding surfaces
in [24]. In stochastic systems, the integral sliding mode control scheme requires very strict assumptions
and we need to eliminate them. A new integral sliding mode control approach was proposed in [25].
The state of the system is difficult to obtain in practice. Inspired by control inputs and measurement
outputs in [26], an observer is constructed to solve this problem in this paper.

The main contributions of this manuscript include:
(1) We first consider the capture of alien species and juvenile native species and we develop a

more general exotic bioeconomic model of alien species invasion, taking into account the effects of
stochastic environmental noise.

(2) For the error system (i.e., model(3.2)) and observer system, we design two ingenious integral
sliding surfaces including the sliding mode observer (SMO) gain matrix and singular matrix. It
more effectively handles various uncertainties and white noise in the system, thereby improving the
robustness of the system.

(3) In this paper, we design a sliding mode controller, which is more suitable for biological systems
to maintain the accessibility of sliding mode surfaces. A self-feedback term is innovatively introduced
into the sliding variables to eliminate the restrictive assumptions often encountered in the sliding mode
control of stochastic Ito systems.
Notations: For the Itô-type stochastic differential equation dζ = f (ζ, t)dt + g(ζ, t)dω where ζ ∈ Rn

is the state, ω is the standard Brownian motion ∈ Rn, and both f (ζ, t) and g(ζ, t) are locally Lipschitz
in ζ and piecewise continuous in t. The differential operator L of V(ζ, t) is defined for the Itô-type
stochastic system as LV(ζ, t) = ∂V

∂t + ∂V
∂ζ

f + 1
2 Tr

{
gT ∂2V

∂ζ2 g
}
.

2. System description and basic preliminaries

2.1. System description

The following model is presented in [27]:{
ẋ1(t) = αx2(t) − r1x1(t) − βx1(t) − ηx2

1(t)
ẋ2(t) = βx1(t) − r2x2(t),

(2.1)

where x1(t) and x2(t) represent population density of immature species and mature species,
respectively; α, r1, β denotes the intrinsic growth rate, death rate and transition rate of the immature
population, respectively; r2 is the death rate of the mature population and the growth of the immature
population is restricted by population density, which is reflected by −ηx2

1(t).
In the development of fishery, we mainly catch adult fish for profit and release young fish when we

catch them. At the same time, we make the following assumptions:

Assumption 1. When the living conditions are the same, the population density of early alien species
is not affected by the external environment.

Assumption 2. The competition between native species and alien species is far less than the internal
competition of alien species.
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Considering the impact of harvesting effort on a biological system, a singular bio-economic model
was established in [28]: 

ẋ1(t) = αx2(t) − r1x1(t) − βx1(t) − ηx2
1(t) − E(t)x1(t)

ẋ2(t) = βx1(t) − r2x2(t)
0 = E(t)(ρx1(t) − c) − m(t),

(2.2)

where E(t) represents the harvesting effort of immature population, ρ represents the price coefficient
of individual population, c represents the cost coefficient, cE (t) represents the total cost, and m (t)
represents the net profit. Based on the system in [30], we can establish the following singular bio-
economic model: 

ẋ1(t) = αx2(t) − r1x1(t) − βx1(t) − ηx2
1(t) − E(t)x1(t)

ẋ2(t) = βx1(t) − r2x2(t)
ẋ3(t) = ax3(t) − hx4(t) − E(t)x3(t)
ẋ4(t) = β1x3(t) − θ1x2(t) − θ2x4(t)

0 = E(t)(ρ1x1(t) + ρ2x3(t) − c) − m(t),

(2.3)

where x3 (t) represents the population density of alien species at the time t. x4 (t) represents its
harvesting capacity. a represents the growth rate of alien invasive species. η represents the limiting rate
of the growth of alien invasive species on the adult fish population. hx4(t) represents the purification
amount of alien species. β1x3(t) represents the fixation purification of alien species. θ1 represents the
impact of purification on adult fish populations. θ2x4(t) represents the cost of capturing alien invasive
species. E(t)x3(t) represents the harvesting effort amount of alien species and ρ1 and ρ2 represent the
price coefficient of x1(t) and x3(t) individual population. There are many stochastic factors in the real
environment that interfere with the changes of immature species density and mature species density.
Considering these factors, we introduce randomness into the model (2.3) by replacing the parameters
r1, r2. First, suppose that the mortality of immature species r1 and mature species r2 will be affected by
white noise, by r1 → r1−α1ξ(t) and r2 → r2−α2ξ(t). Second, it is assumed that the population density
will also be directly affected by the external stochastic excitation ω(t). If the system is unstable, the
expected performance can be achieved by controlling the capture of alien species. Therefore, we add
u (t) to the fourth equation of system (2.3).

ẋ1(t) = αx2(t) − r1x1(t) − βx1(t) − ηx2
1(t) − E(t)x1(t) + α1x1(t)ξ(t) + x1(t)ω(t)

ẋ2(t) = βx1(t) − r2x2(t) + α2x2(t)ξ(t)
ẋ3(t) = ax3(t) − hx4(t)
ẋ4(t) = β1x3(t) − θ1x2(t) − θ2x4(t) + u(t)

0 = E(t) (ρx1(t) + ρ2x3(t) − c) − m(t),

(2.4)

where α1, α2 represent the intensity of the white noises and ξ(t) and ω(t) are independent, in possession
of the zero mean value and standard variance Gauss white noises. i.e., E[ω(t)] = 0, E[ω(t)ω(t + τ)] =

δ(τ), δ(x) represents the Dirac function.

Remark 1. Biological system modeling can not only use the Takagi and Sugeno (T-S) fuzzy method,
but also use the adaptive T-S neural network method to deal with biological population problems. In
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particular, a novel hybrid photovoltaic maximum power point tracker structure based on an adaptive
T-S fuzzy radial basis function neural network approach is proposed in [34]. Compared with the T-S
fuzzy method, it has higher tracking efficiency and minimum tracking deviation, but it will make the
system more complicated, which is not conducive to manual intervention in a biological system.

2.2. T-S fuzzy linearization and preliminaries

In this section, we use the T-S fuzzy method to express the nonlinear system as multiple local linear
systems to make the analysis easier [32]. System (2.4) can be written as:

Edx(t) = [Ax(t) + BU(t)]dt + Jx(t)dw(t), (2.5)

where

A =


z1 (t) α 0 0 −x1 (t)
β z2 (t) 0 0 0
0 0 a −h −x3 (t)
0 −θ1 β1 −θ2 0

z3 (t) 0 z4 (t) 0 −c


, E =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0


,

J =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, B =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −m (t)


,

U(t) =
[

1 1 1 u(t) 1
]T
, x(t) =

[
x1 (t) x2 (t) x3 (t) x4 (t) E (t)

]T
,

where z1 (t) = −r1 − β− ηx1 (t) +α1ξ (t), z2 (t) = −x1 (t), z3 (t) = ρ1E (t), z4 (t) = ρ2E (t), z5 (t) = −x3 (t).
Thus,

max z1 (t) = −r1 − β − ηmin x1(t) + α1ξ (t) ,
min z1 (t) = −r1 − β − ηmax x1(t) + α1ξ (t) ,
max z2(t) = −min x1(t),min z2(t) = −max x1(t),
max z3(t) = ρ1 max E(t),min z3(t) = ρ1 min E(t),
max z4(t) = ρ2 max E(t),min z4(t) = ρ2 min E(t),
max z5(t) = −min x3(t),min z5(t) = −max x3(t).

Using the maximum and minimum values, z1 (t), z2 (t) , z3 (t) , z4 (t) and z5 (t) can be represented by

z1 (t) = M11 (z1 (t)) max z1 (t) + M12 (z1 (t)) min z1 (t) ,
z2 (t) = M21 (z2 (t)) max z2 (t) + M22 (z2 (t)) min z2 (t) ,
z3 (t) = M31 (z3 (t)) max z3 (t) + M32 (z3 (t)) min z3 (t) ,
z4 (t) = M41 (z4 (t)) max z4 (t) + M42 (z4 (t)) min z4 (t) ,
z5 (t) = M51 (z5 (t)) max z5 (t) + M52 (z5 (t)) min z5 (t) ,
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where Mi1 + Mi2 = 1, i = 1, 2, 3, 4, 5 and Mi j represent the membership functions. Ai is the coefficient
matrix of linear system after fuzzy and Bi is the control input matrix. The system (2.5) can be written
as

Edx(t) =

32∑
i=1

hi(z(t))[(Aix(t) + BiU(t))dt + Jx(t)dw(t)], (2.6)

where hi (z (t)) are the weight functions defined by

hi (z (t)) =

r∏
j=1
ωi j

(
z j (t)

)
g∑

i=1

r∏
j=1
ωi j(z j(t))

, hi (z(t)) ≥ 0,
32∑
i=1

hi (z (t)) = 1.

The ωi j

(
z j (t)

)
is called the grade of membership funcition z j (t) in ωi j.

For notational simplicity,
32∑
i=1

hi (z (t))Ai and
32∑
i=1

hi (z (t))Bi will be written as Ā and B̄ , respectively.

The T-S fuzzy stochastic singular bio-economic system (2.6) is shown as follows:Edx (t) = [Āx (t) + B̄U (t)]dt + Jx (t) dω (t)

y (t) = Cx (t) .
(2.7)

A schematic diagram of the T-S fuzzy bio-economic systems is shown in Figure 1.

T-S fuzzy bio-ecomonic
system (2.7)

Sliding mode
controller

Sliding mode
surface

s(t)

u(t)
+

x(t)

Sliding mode
observer

ω(t)

x̂(t)

Figure 1. T-S fuzzy control algorithm block diagram.

3. Main results

3.1. Sliding mode observer design

In this paper, we mainly study the population density of alien species. However, in practice, due to
various factors and the rapid reproduction of alien species, it is difficult to measure the real population
density. Therefore, the design of the state observer usually provides an approximate estimate for the
original system. However, it can be observed that since the sliding mode observer has a discontinuous
control law, it can deal with the case where the population density is externally excited. Therefore, the
observer (3.1) is proposed in this paper.
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The functions are as follows:Edx̂(t) = [Āx̂(t) + B̄(U(t) − Us(t)) + G (y (t) − ŷ (t))]dt

ŷ (t) = Cx̂ (t) ,
(3.1)

where x̂(t) ∈ Rn represents the state estimation of x(t), ŷ(t) represents the output vector of the observer,
Us (t) represents the input vector of observer and G represents the observer gain to be designed in the
sequel.

Define e(t) = x(t) − x̂(t) , which represents state estimation error. Subtracting system (3.1) from
system (2.7), according to the systems (2.7) and (3.1), we can obtain (3.2) as follows:

Ede(t) = [(Ā −GC)e(t) + B̄Us(t)]dt + Jx(t)dw(t). (3.2)

3.2. Construction of sliding surfaces

We first construct the sliding surface for the error system (3.2). The sliding surface is obtained by
making s (t) = 0, where the sliding variable s (t) is defined as

s(t) = S Ee(t) − S Ee(t0) +

∫ t

t0
(S GCe(ν) − Qs(ν))dν, (3.3)

where S ∈ Rn×n is a known matrix satisfying det
(
S B̄

)
, 0 and rank

[
S E
C

]
= rankC and G is the

observer gain. Q is a known positive definite matrix used to adjust the convergence rate and eliminate
the constraint S J̄ = 0.

Remark 2. We limit rank
[

S E
C

]
= rankC, so that there is a matrix H satisfying S E = HC, so the

sliding variable s (t) can be converted into

s (t) = H (y (t) − ŷ (t)) − H (y (0) − ŷ (0)) +

∫ t

t0
(S G(y(ν) − ŷ(ν)) − Qs(ν))dν,

which is accessible.

Compared with the sliding variable without self feedback term, the advantages of the sliding
variable (3.6) are mainly reflected in two points: First, the self-feedback term−Qs (t) allows an increase
in the stability margin and makes the sliding variable more robust to disturbances beyond the sliding
surface. Second, the self-feedback term is also responsible for eliminating the restrictive constraint
S J = 0, stabilizing the sliding variable and reducing chattering. From (3.2) and (3.3), it follows that

ds(t) = S Ede(t) + S GCe(t) − Qs(t)
= S [(Ā −GC)e(t) + B̄Us(t)] + S Jx(t)dw(t) + S GCe(t) − Qs(t)
= S [Āe(t) + B̄Us(t)] − Qs(t) + S Jx(t)dw(t)
= Ls(t) + S Jx(t)dw(t).

(3.4)

When the system is constrained on the sliding surface, we can get E {s (t)} = 0, so from (3.4), we
get Ls (t) = 0. The equivalent control law can be given by Useq (t) = −

(
S B̄

)−1
S Āe (t). Substituting

Useq (t) into (3.2), the sliding mode dynamic can be obtained as

Ede(t) = (Ã −GC)e(t)dt + [Je(t) + Jx̂(t)]dw(t), (3.5)
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where Ã =

(
I − B̄

(
S B̄

)−1
S
)

Ā.
According to (3.4), the dynamics of sliding variable s (t) includes a product term −Qs (t), which

involves a Hurwitz matrix −Q and sliding variable itself, which means that the term −Qs (t) contained
in the sliding variable (3.3) has a stabilizing effect on the sliding variable. It can be seen that by
introducing −Qs (t) into the sliding variable s (t) and selecting an appropriate positive definite matrix
Q, the convergence speed of the sliding variable can be improved to a certain extent.

By using the state variables of the designed observer, the stability of the system is achieved, and
the expected performance is achieved. Therefore, s0 = 0 can be used to design the observer for (3.1),
where

s0 (t) = S 0Ex̂ (t) − S 0Ex̂ (t0) − S 0

∫ t

t0

(
Ā + B̄K

)
x̂ (ν) dν (3.6)

and K is the parameter matrix, so that E, Ā + B̄ are admissible and S 0 = B̄T X ∈ Rm×n is the unknown
matrix to be determined later.

From (3.4) and (3.6), it follows that

.
s0 (t) = S 0E ˙̂x(t) − S 0(Ā + B̄K)x̂(t)

= S 0

[
Āx̂ (t) + B̄ (U (t) − Us (t)) + GCe (t)

]
− S 0

(
Ā + B̄K

)
x̂ (t)

= S 0B̄ (U (t) − Us (t) − Kx̂ (t)) + S 0GCe (t)

= Ls0 (t) .

(3.7)

The equivalent control law can be obtained

Ueq = Kx̂ (t) + Us (t) −
(
S 0B̄

)−1
S 0GCe (t) .

Further, substituting the equivalent control law into the observer (3.1), we can get the following
equation

E ˙̂x(t) = (A + B̄K)x̂(t) + (I − B̄(S 0B̄)−1S 0)GCe(t). (3.8)

3.3. Stability of sliding motion

The dynamics of the resultant sliding motion are givenE ˙̂x(t) = (A + B̄K)x̂(t) + (I − B̄(S 0B̄)−1S 0)GCe(t)
Eė(t) = (Ã −GC)e(t) + [Je(t) + Jx̂(t)]ẇ(t)

Â =

[
Ā + B̄K I − B̄(S 0B)−1S 0GC

0 Ā −GC

]
.

In order to analyze the mean-square exponentially admissibility of (3.5) and (3.8) simultaneously,
the SMO system (3.1) can track the original system (2.7) and the estimation state variables can converge
to zero. Thus, we consider the following augmented system:

Ê ẋe (t) = Âxe (t) dt + Ĵxe (t) ẇ (t) , (3.9)
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where

Ê =

(
E 0
0 E

)
, xe (t) =

[
x̂ (t)
e (t)

]
, Ĵ =

[
0 0
J J

]
. (3.10)

Theorem 3.1. The closed-loop system (3.9) is mean-square exponentially admissible if there are
matrices K,G, X and Y, and a positive scalar α such that the following inequalities hold:

ET X = XT E ≥ 0 (3.11)
ET Y = YT E ≥ 0, (3.12)

 Λi + αJT (E+)T ET YE+J −XT
(
B̄K

)
−
(
B̄K

)T
X αΦi

 < 0, (3.13)

where

Λi =
(
Ā + B̄K

)T
X + XT

(
Ā + B̄K

)
+ JT (E+)T ET YE+J. (3.14)

Φi =
(
Ā −GC

)T
Y + YT

(
Ā −GC

)
. (3.15)

Proof. First, we prove that system (3.9) is impulse free, regular and has a unique solution.
Let

Ẑ =

[
X 0
0 αY

]
. (3.16)

Using (3.10)–(3.12) and (3.16), we have the following equation

ÊT Ẑ =

[
ET X 0

0 αET Y

]
=

[
XT E 0

0 αYT E

]
= ẐT Ê ≥ 0. (3.17)

Singular invertible matrix results in

Ê+ =

[
E+ 0
0 E+

]
. (3.18)

Calculated by (3.10) and (3.18),

ÂT Ẑ + ẐT Â + ĴT
(
Ê+

)T
ÊT ẐÊ+ Ĵ =

 Λi + αJT (E+)T ET YE+J −XT
(
B̄K

)
−
(
B̄K

)T
X αΦi

 , (3.19)

where Λi and Φi are defined in (3.14) and (3.15). It can be seen from Eq (3.16) that the matrix (3.19)
is negative definite; that is,

ÂT Ẑ + ẐT Â + ĴT
(
Ê+

)T
ÊT ẐÊ+ Ĵ < 0. (3.20)

There are non-singular matrixs M and N such that

MÊN =

[
Ir 0
0 0

]
,MÂN =

[
Â11 Â12

Â21 Â22

]
,MĴN =

[
Ĵ11 Ĵ12

0 0

]
,

M−T ẐN =

[
Ẑ11 Ẑ12

Ẑ21 Ẑ22

]
,N−1xe (t) =

[
x̂1 (t)
x̂2 (t)

]
.

(3.21)
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From (3.17), we can get NT ÊT MT M−T ẐN = NT ẐT M−1MÊN ≥ 0; that is,[
Ir 0
0 0

] [
Ẑ11 Ẑ12

Ẑ21 Ẑ22

]
=

[
ẐT

11 ẐT
12

ẐT
21 ẐT

22

] [
Ir 0
0 0

]
≥ 0. (3.22)

By (3.22), we get

Ẑ11 = ẐT
11, Ẑ12 = 0,M−T ẐN =

[
Ẑ11 0
Ẑ21 Ẑ22

]
, (3.23)

then

NT ÊT ẐN =
(
NT ÊT MT

) (
M−T ẐN

)
=

[
Ẑ11 0
0 0

]
. (3.24)

It follows that (3.20) implies
ÂT Ẑ + ẐT Â < 0. (3.25)

Moreover, pre-multiplying and post-multiplying Eq (3.25) by NT and N gives us[
∆1 ∆2

∗ ÂT
22Ẑ22 + ẐT

22Â22

]
< 0. (3.26)

Since ∆1 and ∆2 are independent of the results discussed below, the actual expressions for these two
variables are omitted. From (3.26), we have ÂT

22Ẑ22 + ẐT
22Â22 < 0, which makes it easy to find Â22 as

nonsingular. Therefore, from Eq (3.10), we can obtain the constrained equivalent transformation form
of (3.9).  ˙̂x1(t) = (Â11 − Â12Â−1

22 Â21)x̂1(t) + (Ĵ11 − Ĵ12Â−1
22 Â21)x̂1(t)ẇ(t)

˙̂x2 (t) = −Â−1
22 Â21 x̂1 (t) .

(3.27)

We get system (3.9) as regular and impulse-free. Based on the stochastic theory, the system (3.9)
has a unique solution.

Next, we will prove that the system (3.9) is the mean-square exponential stability. Select the
Lyapunov function candidate as V (xe (t) , t) = xe

T (t) ÊT Ẑxe (t).
Let W (t) = eεtV (xe (t) , t) and using (3.1), we can obtain

Ẇ (t) = εeεtV (xe (t) , t) + eεtLV (xe (t) , t) + 2eεtxe
T (t) ẐT Ĵxe (t) . (3.28)

Integrating both sides and then taking expectation yields

E (W (t)) = E (W (t0)) +

∫ t

t0
εeενEV (xe (ν) , ν) dν +

∫ t

t0
eενEV (xe (ν) , ν) dν. (3.29)

By (2.3), we make
V (xe (t) , t) = xT

e (t) ÊT Ẑxe (t) = x̂T
1 (t) Ẑ11 x̂1 (t) , (3.30)

which means that
λmin(Ẑ11)‖x̂1(t)‖2 ≤ V(xe(t), t) ≤ λmax(Ẑ11)‖x̂1(t)‖2. (3.31)

On the basis of (3.31), one can obtain

E (V (xe (t) , t)) ≤ λmax

(
Ẑ11

)
E‖x̂1 (t)‖2. (3.32)
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E(W(t)) = eεtEV(xe(t), t) ≥ λmin(Ẑ11)eεtE(‖x̂1(t)‖2). (3.33)

In terms of x̂2 (t) = −Â−1
22 Â21 x̂1 (t) given by (3.27), one can find positive scalars f1 and f2 such that

f1‖x̂1 (t)‖2 ≤ ‖x̂2 (t)‖2 ≤ f2‖x̂1 (t)‖2. (3.34)

It is noted that ∥∥∥N−1xe (t)
∥∥∥2

= ‖x̂1 (t)‖2 + ‖x̂2 (t)‖2. (3.35)

By (3.34) and (3.35), we have

( f1 + 1) ‖x̂1 (t)‖2 ≤
∥∥∥N−1xe (t)

∥∥∥2
≤ ( f2 + 1) ‖x̂1 (t)‖2, (3.36)

which indicates
( f1 + 1)

λmax
(
N−T N−1)‖x̂1 (t)‖2 ≤ ‖xe (t)‖2 ≤

( f2 + 1)
λmin

(
N−T N−1)‖x̂1 (t)‖2. (3.37)

From (3.2) and (3.20), we can find a positive scalar η so that

LV (xe (t) , t) ≤ −η‖xe (t)‖2. (3.38)

Substituting (3.37) into (3.38) and then taking expectation, one has

E (LV (xe (t) , t)) ≤ −φE
(
‖x̂1 (t)‖2

)
, (3.39)

where φ =
η( f1 + 1)

λmax(N−T N−1)
. Substituting (3.32), (3.33) and (3.39) into (3.29), one has

λmin(Ẑ11)eεtE‖x̂1(t)‖2 ≤ E(W(t0)) +

∫ t

t0
(ελmax(Ẑ11) − φ)eενE‖x̂1 (ν)‖2dν. (3.40)

If ε is chosen as ε ≤ φ

λmax(Ẑ11) , (3.40) becomes

λmin

(
Ẑ11

)
eεtE

(
‖x̂1 (t)‖2

)
≤ E (W (t0)) , (3.41)

which indicates
E

(
‖x̂1 (t)‖2

)
≤ κe−εt, (3.42)

where κ =
E(W(t0))
λmin(Ẑ11) . Using (3.34) and (3.42), one has

E
(
‖x̂2 (t)‖2

)
≤ f2κe−εt. (3.43)

It can be seen that system (3.9) is mean-square exponentially admissible.
�
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3.4. Design of sliding mode controllers

Theorem 3.2. Select the appropriate matrix Q > 0, K and sliding mode controller

Us (t) =
(
S B̄

)−1
S Āx̂ (t) − ρ

(
S B̄

)−1
s (t)

‖s (t)‖
, (3.44)

where ρ = θ
∥∥∥S Ā

∥∥∥ + ∂. If (3.13) is feasible, then for all ‖x (t)‖ ≤ θ, the sliding mode controller Us (t)
given as above will guarantee that state trajectories of error system (3.2) are attracted to a small ball
region around the sliding surface s (t) = 0 from the beginning almost surely.

Proof. We can get
ds(t) = [S (Āe(t) + B̄Us(t)) − Qs(t)]dt + S Jx(t)dw(t). (3.45)

Select the Lyapunov function as V (s (t)) = 1
2 sT (t)s(t). According to the formula of Itô, it is as follows:

dV(s(t)) = LV (s (t)) dt + sT (t) S Jx (t) dw (t), (3.46)

where

LV (s (t)) = sT (t)
[
S

(
Āe (t) + B̄Us (t)

)
− Qs (t)

]
+

1
2

xT (t) JT S T S Jx (t)

= −ρ ‖s (t)‖ + sT (t) S Āx (t) − sT (t) Qs (t) +
1
2

xT (t) JT S T S Jx (t)

≤ −ρ ‖s (t)‖ + θ
∥∥∥S Ā

∥∥∥ ‖s (t)‖ − λmin (Q) ‖s (t)‖2 +
1
2
λmax

(
JT S T S J

)
‖x (t)‖2.

(3.47)

The reachability condition LV (s (t)) ≤ α1 ‖s (t)‖ is satisfied if the following holds

λmin(Q)‖s (t)‖2 −
(
α1 + θ

∥∥∥S Ā
∥∥∥ − ρ) ‖s(t)‖ −

1
2
λmax

(
JT S T S J

)
‖x(t)‖2 ≥ 0, (3.48)

where ρ ≥ α1 + θ
∥∥∥S Ā

∥∥∥. It can be concluded that the solution of parabolic Eq (3.48) can be divided into
two cases: One is that there is a unique solution ‖s (t)‖ = 0, and the other is that there are two different
solutions

‖s(t)‖1 =
(α1 − ∂)
2λmin(Q)

− Ξ, ‖s (t)‖2 =
(α1 − ∂)
2λmin (Q)

+ Ξ,

where Ξ =

√
(α1−∂)2+2λmin(Q)λmax(JT S T S J)‖x(t)‖2

2λmin(Q) ,‖s (t)‖ = 0 can be regarded as a special case of different
solutions. Therefore, we only need to analyze the case of two different solutions. According to the
parabolic equation in geometry, as long as ‖s (t)‖ ≥ ‖s (t)‖2 is met, (3.48) is true and ‖s (t)‖ ≤ ‖s (t)‖1 is
discarded due to ‖s (t)‖ ≥ 0 and ‖s (t)‖1 ≤ 0.Thus, can get

LV(s(t)) ≤ α1 ‖s(t)‖ ,∀ ‖s (t)‖ ≥
(α1 − ∂)
2λmin(Q)

+ Ξ.

This means that the sliding variable s (t) is limited to a ball region

Υ(s(t),Q) =

{
s(t)

∣∣∣∣∣‖s(t)‖ ≤
(α1 − ∂)
2λmin(Q)

+Ξ}

for the beginning almost surely. As a result, the almost sure attractiveness of ball region Υ (s (t) ,Q) is
proved. �
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Theorem 3.3. Select the appropriate matrix Q > 0, K and sliding mode controller

U (t) =

((
S B̄

)−1
S Ā + K

)
x̂ (t) − (S 0B̄)−1S 0G(y(t) − ŷ(t)) − ξ

(S 0B̄)−1s0(t)
‖s0(t)‖

, (3.49)

where ξ = ρ
∥∥∥∥(S B̄)−1

∥∥∥∥ ∥∥∥S 0B̄
∥∥∥ + µ and ρ = θ

∥∥∥S Ā
∥∥∥ + ∂. If (3.12) is feasible, for all ‖x (t)‖ ≤ θ, the sliding

mode controller U (t) given above will ensure that the state track of the observer system (3.1) is almost
certainly pulled to the sliding surface s0 (t) = 0 from the beginning.

Proof. We can get
ṡ0(t) = S 0B̄(U(t) − Us(t) − Kx̂(t)) + S 0GCe(t). (3.50)

Select the Lyapunov function as V (s0 (t)) = 1
2 s0

T (t) s0 (t) . According to the formula of Itô, we have

V̇ (s0 (t)) = LV (s0 (t)) , (3.51)

where
LV (s0 (t)) = sT

0 (t)
[
S 0B̄ (U (t) − Us (t) − Kx̂ (t))

]
+ sT

0 (t) S 0GCe (t)

= sT
0 (t)

S 0B̄

−ξ
(
S 0B̄

)−1
s0 (t)

‖s0 (t)‖
+ ρ

(
S B̄

)−1
s (t)

‖s (t)‖




= −ξ ‖s0 (t)‖+ρsT
0 (t) S 0B̄

(
S B̄

)−1
s (t)

‖s (t)‖

≤ −ξ ‖s0 (t)‖+ρ ‖s (t)‖
∥∥∥S 0B̄

∥∥∥ ∥∥∥∥(S B̄
)−1∥∥∥∥ ‖s0 (t)‖

≤ −µ ‖s0 (t)‖ .

(3.52)

It can be concluded that the sliding variable s0 (t) has been almost always on the sliding surface
s0 (t) = 0 since the beginning. �

Remark 3. In this paper, we add the product term −Qs (t) to the sliding variable s (t) in (3.3) to
counteract the 1

2 xT (t) JT S T S Jx (t) caused by the presence of random noise. Therefore, it is no longer
necessary to consider limiting S J = 0. In addition, when S J = 0 is met, the ideal sliding mode
appears, and the ball area Y (s (t) ,Q) becomes the sliding surface s (t) itself. If this happens, the
additional robustness of the self feedback item −Qs (t) will also make the proposed integral sliding
variable s (t) better than the existing sliding variable.

4. Simulation

Human activities have led to the destruction of the ecological environment of a large number of
biological species. For instance, the ocean has been affected by land erosion, which has destroyed
the spawning grounds and living environment of young fish. Environmental pollution has also had an
increasingly serious impact on people’s production and daily life. It is urgent to control and deal with
the invasion of alien species.
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In the economic globalization today, invasive species has increasingly become a global hot issue.
Since the 1980s, alien species have shown a faster growth trend in China. Up to now, nearly 50 new
invasive species have been added, and more than 20 dangerous invasive species have successively
erupted in large areas in China.

We choose the following parameters according to the case of Nile tilapia:
α = 0.4 r1 = 0.5 β = 0.5 η = 0.1 α1 = 0.1
r2 = 0.1 α2 = 0.1 a = 0.6 h = 0.01 β1 = 0.4
θ1 = 0.1 θ2 = 0.2 c = 3 ρ1 = ρ2 = 4.

We have: 

ẋ1(t) = 0.4x2(t) − 0.5x1(t) − 0.5x1(t) − 0.1x2
1(t) − E(t)x1(t)

+ 0.1x1(t)ξ(t) + x1 (t)ω(t)
ẋ2(t) = 0.5x1(t) − 0.1x2(t) + 0.6x2(t)ξ(t)
ẋ3(t) = 0.6x3(t) − 0.01x4(t) − E(t)x3(t)
ẋ4(t) = 0.4x3(t) − 0.1x2(t) − 0.2x4(t) + u (t)

0 = E(t)(4x1(t) + 4x3(t) − 3) − m (t) ,

where

x1 (t) ∈ [−8, 8] , x2 (t) ∈ [0, 6] , x3 (t) ∈ [0, 4] ,
x4 (t) ∈ [−6, 0] , E (t) ∈ [−6, 2] ,

then z1 (t), z2 (t) , z3 (t) , z4 (t) and z5 (t) are obtained as follows:

max z1 (t) = −0.9, min z1 (t) = −1.4
max z2 (t) = 0, min z2 (t) = −10
max z3 (t) = 20, min z3 (t) = 0
max z4 (t) = 20, min z4 (t) = 0
max z5 (t) = 0, min z5 (t) = −3.

According to the above fuzzy rules given, the fuzzy model is carried out as (2.6). For the expression
of A1, A2,...A32, see the appendix . The other expression is as follows:

E =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0


, Bi =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0


, i = 1, · · · 32, Ji =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, i = 1, · · · 32

C =

[
−0.4 0 1 −2 1

0 2 0 −1 0

]
,M11 =

z1 (t) + 1.4
0.5

,M12 =
−0.9 − z1 (t)

0.5
,

M21 =
z2 (t) + 10

10
,M22 =

−z1 (t)
10

,M31 =
z3 (t)
20

,M32 =
20 − z3 (t)

20
.

Set the initial conditions of system (2.6) and observer system to x(0) =[
−7.9 3 0.8 −7.8 −4.9

]T
and x̂(0) =

[
−7.9 3 0.8 −7.8 −4.9

]T
.

AIMS Mathematics Volume 9, Issue 1, 1472–1493.



1486

The state trajectory of the open loop system (2.6) can be clearly seen in Figure 2, which is not mean-
square exponentially admissible. Next, in order to stabilize the system (2.6), a sliding mode control
strategy is designed.
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Figure 2. Trajectory of open-loop system.

It can be obtained that

X =


0.6294 −0.8049 −0.6848 −0.7162 0.3115
0.8116 −0.4430 0.9412 −0.1565 −0.9286
−0.7460 0.0938 0.9143 0.8315 0.6983
0.8268 0.9150 −0.0292 0.5844 0.8680
0.2647 0.9298 0.6006 0.9190 0.3575


,G =


5.1548 4.1209
4.8626 −9.3633
−2.1555 −4.4615
3.1096 −9.0766
−6.5763 −8.0574


× 106.

To design sliding mode control (SMC) laws Us (t) and U (t), take appropriate matrices

S =
[
−0.2 2.5 −1.2 −1.8 −2.4

]
,Q = 2, K =



−1.6469 −0.8775 −0.9795 −0.5521 −0.9967
−1.3897 −0.7631 −0.8912 −1.3594 −1.9195
−0.6342 −1.5310 −1.2926 −1.3102 −0.6808
−1.9004 −1.5904 −1.4187 −0.3252 −1.1705
−0.0689 −0.3737 −1.5094 −0.2380 −0.4476


and θ=1.5, ∂ = 0.001, µ = 0.001. Figure 3 shows the trajectory of the closed-loop system, from which it
can be found that the state variable of the closed-loop system can converge to zero in a very short time,
that is, the observer is asymptotically stable. Figure 4 show the sliding mode surface, respectively.
Therefore, the proposed observer and control scheme are effective. To reduce the chattering, by

replacing
s (t)
‖s (t)‖

and
s0 (t)
‖s0 (t)‖

by
s (t)

‖s (t)‖ + 0.01
and

s0 (t)
‖s0 (t)‖ + 0.01

, as can be seen from Figures 3–6,

the simulation results have less chattering and faster convergence. It can be seen that the method of
introducing self feedback −Qs (t) is improved compared with the existing method, which shows that
the self feedback item can play a stable role. Therefore, it should be weighed when selecting Q.
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Figure 3. Trajectory of the closed-loop system.
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Figure 4. Trajectory of sliding mode surface s.
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Figure 5. Trajectory of control signal u.
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Figure 6. Trajectory of error system.

5. Conclusions

In this paper, observer-based integral sliding mode control for singular bio-economic system with
stochastic fluctuations is studied. A sliding mode observer is designed and an observer based integral
sliding mode control method is proposed. By introducing a term consisting of a sliding variable and
a negative definite matrix, a new integral sliding surface is constructed. From the results, it can be
concluded that the newly introduced term can eliminate restrictive assumptions and has a stabilizing
effect on sliding variables. Finally, an example is given to illustrate the effectiveness of the results
obtained.

In biology, up to now, we still need to invest in a lot of manpower and material resources to control
the density of alien species. The observer-based integral sliding mode control method proposed by us
can effectively control the population density of alien invasive species to ensure that native species and
invasive species can coexist within a certain range.
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
−1.4 0.4 0 0 −10
0.5 0 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0
0 0 20 0 0


,

A21 =


−1.4 0.4 0 0 −10
0.5 0 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0

20 0 0 0 −3


, A22 =


−1.4 0.4 0 0 −10
0.5 0.9 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0

20 0 0 0 0


,
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A23 =


−1.4 0.4 0 0 −10
0.5 0 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0
20 0 20 0 −3


, A24 =


−1.4 0.4 0 0 −10
0.5 0 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0

20 0 20 0 0


,

A25 =


−1.4 0.4 0 0 0
0.5 5 0 0 0
0 0 0.6 −0.01 −3
0 −0.1 0.4 −0.2 0
0 0 0 0 −3


, A26 =


−1.4 0.4 0 0 0
0.5 5 0 0 0
0 0 0.6 −0.01 −3
0 −0.1 0.4 −0.2 0
0 0 0 0 0


,

A27 =


−1.4 0.4 0 0 0
0.5 5 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0
0 0 20 0 −3


, A28 =


−1.4 0.4 0 0 0
0.5 5 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0
0 0 20 0 0


,

A29 =


−1.4 0.4 0 0 0
0.5 5 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0

20 0 0 0 −3


, A30 =


−1.4 0.4 0 0 0
0.5 5 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0

20 0 0 0 0


,

A31 =


−1.4 0.4 0 0 0
0.5 5 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0

20 0 20 0 −3


, A32 =


−1.4 0.4 0 0 0
0.5 5 0 0 0
0 0 0.6 −0.01 0
0 −0.1 0.4 −0.2 0

20 0 20 0 0


,
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