As a generalization of a consistent pair of $ t $-structures on triangulated categories, we introduced the notion of a consistent pair of $ \mathfrak{s} $-torsion pairs in the extriangulated setup. Let $ (\mathcal{T}_{i}, \mathcal{F}_{i}) $ be an $ \mathfrak{s} $-torsion pair in an extriangulated category with a negative first extension for any $ i = 1, 2 $. By using the consistent pair, we gave a criterion for $ (\mathcal{T}_{1}\ast\mathcal{T}_{2}, \mathcal{F}_{1}\cap\mathcal{F}_{2}) $ to be an $ \mathfrak{s} $-torsion pair. Our results were then applied to the torsion theory induced by $ \tau $-rigid modules.
Citation: Limin Liu, Hongjin Liu. Consistent pairs of $ \mathfrak{s} $-torsion pairs in extriangulated categories with negative first extensions[J]. AIMS Mathematics, 2024, 9(1): 1494-1508. doi: 10.3934/math.2024073
As a generalization of a consistent pair of $ t $-structures on triangulated categories, we introduced the notion of a consistent pair of $ \mathfrak{s} $-torsion pairs in the extriangulated setup. Let $ (\mathcal{T}_{i}, \mathcal{F}_{i}) $ be an $ \mathfrak{s} $-torsion pair in an extriangulated category with a negative first extension for any $ i = 1, 2 $. By using the consistent pair, we gave a criterion for $ (\mathcal{T}_{1}\ast\mathcal{T}_{2}, \mathcal{F}_{1}\cap\mathcal{F}_{2}) $ to be an $ \mathfrak{s} $-torsion pair. Our results were then applied to the torsion theory induced by $ \tau $-rigid modules.
[1] | T. Adachi, H. Enomoto, M. Tsukamoto, Intervals of $\mathfrak{s}$-torsion pairs in extriangulated categories with negative first extensions, Math. Proc. Cambridge, 174 (2023), 451–469. https://doi.org/10.1017/S0305004122000354 doi: 10.1017/S0305004122000354 |
[2] | T. Adachi, O. Iyama, I. Reiten, $\tau$-tilting theory, Compos. Math., 150 (2014), 415–452. https://doi.org/10.1112/S0010437X13007422 doi: 10.1112/S0010437X13007422 |
[3] | M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra, 69 (1981), 426–454. https://doi.org/10.1016/0021-8693(81)90214-3 doi: 10.1016/0021-8693(81)90214-3 |
[4] | A. I. Bondal, Operations on $t$-structures and perverse coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat., 77 (2013), 5–30. https://doi.org/10.1070/im2013v077n04abeh002654 doi: 10.1070/im2013v077n04abeh002654 |
[5] | X. Chen, Extensions of covariantly finite subcategories, Arch. Math., 93 (2009), 29–35. https://doi.org/10.1007/s00013-009-0013-8 doi: 10.1007/s00013-009-0013-8 |
[6] | R. Gentle, G. Todorov, Extensions, kernels and cokernels of homologically finite subcategories, In: Representation Theory of Algebras (Cocoyoc, 1994); CMS Conf. Proc., 18 (1994), 227–235. |
[7] | J. He, Extensions of covariantly finite subcategories revisited, Czech. Math. J., 69 (2019), 403–415. https://doi.org/10.21136/CMJ.2018.0338-17 doi: 10.21136/CMJ.2018.0338-17 |
[8] | J. Hu, D. Zhang, P. Zhou, Proper classes and Gorensteinness in extriangulated categories. J. Algebra, 551 (2020), 23–60. https://doi.org/10.1016/j.jalgebra.2019.12.028 doi: 10.1016/j.jalgebra.2019.12.028 |
[9] | O. Iyama, Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., 172 (2008), 117–168. https://doi.org/10.1007/s00222-007-0096-4 doi: 10.1007/s00222-007-0096-4 |
[10] | P. Jørgensen, K. Kato, Triangulated subcategories of extensions, stable t-structures, and triangles of recollements, J. Pure Appl. Algebra, 219 (2015), 5500–5510. https://doi.org/10.1016/j.jpaa.2015.05.029 doi: 10.1016/j.jpaa.2015.05.029 |
[11] | Y. Liu, H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra, 528 (2019), 96–149. https://doi.org/10.1016/j.jalgebra.2019.03.005 doi: 10.1016/j.jalgebra.2019.03.005 |
[12] | H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. G$\acute{e}$om. Diff$\acute{e}$r. Cat$\acute{e}$g., 60 (2019), 117–193. |
[13] | L. Tan, T. Zhao, Extension-closed subcategories in extriangulated categories, AIMS Math., 7 (2022), 8250–8262. http://dx.doi.org/10.3934/math.2022460 doi: 10.3934/math.2022460 |
[14] | T. Yoshizawa, Subcategories of extension modules by Serre subcategories, Proc. Am. Math. Soc., 140 (2012), 2293–2305. https://doi.org/10.1090/S0002-9939-2011-11108-0 doi: 10.1090/S0002-9939-2011-11108-0 |
[15] | P. Zhou, B. Zhu, Triangulated quotient categories revisited, J. Algebra, 502 (2018), 196–232. https://doi.org/10.1016/j.jalgebra.2018.01.031 doi: 10.1016/j.jalgebra.2018.01.031 |