Research article

Upper paired domination in graphs

  • Received: 23 May 2021 Accepted: 29 September 2021 Published: 21 October 2021
  • MSC : 05C69, 68Q15

  • A set $ PD\subseteq V(G) $ in a graph $ G $ is a paired dominating set if every vertex $ v\notin PD $ is adjacent to a vertex in $ PD $ and the subgraph induced by $ PD $ contains a perfect matching. A paired dominating set $ PD $ of $ G $ is minimal if there is no proper subset $ PD'\subset PD $ which is a paired dominating set of $ G $. A minimal paired dominating set of maximum cardinality is called an upper paired dominating set, denoted by $ \Gamma_{pr}(G) $-set. Denote by $ Upper $-$ PDS $ the problem of computing a $ \Gamma_{pr}(G) $-set for a given graph $ G $. Michael et al. showed the APX-completeness of $ Upper $-$ PDS $ for bipartite graphs with $ \Delta = 4 $ [11]. In this paper, we show that $ Upper $-$ PDS $ is APX-complete for bipartite graphs with $ \Delta = 3 $.

    Citation: Huiqin Jiang, Pu Wu, Jingzhong Zhang, Yongsheng Rao. Upper paired domination in graphs[J]. AIMS Mathematics, 2022, 7(1): 1185-1197. doi: 10.3934/math.2022069

    Related Papers:

  • A set $ PD\subseteq V(G) $ in a graph $ G $ is a paired dominating set if every vertex $ v\notin PD $ is adjacent to a vertex in $ PD $ and the subgraph induced by $ PD $ contains a perfect matching. A paired dominating set $ PD $ of $ G $ is minimal if there is no proper subset $ PD'\subset PD $ which is a paired dominating set of $ G $. A minimal paired dominating set of maximum cardinality is called an upper paired dominating set, denoted by $ \Gamma_{pr}(G) $-set. Denote by $ Upper $-$ PDS $ the problem of computing a $ \Gamma_{pr}(G) $-set for a given graph $ G $. Michael et al. showed the APX-completeness of $ Upper $-$ PDS $ for bipartite graphs with $ \Delta = 4 $ [11]. In this paper, we show that $ Upper $-$ PDS $ is APX-complete for bipartite graphs with $ \Delta = 3 $.



    加载中


    [1] G. Ausiello, M. Protasi, A. Marchettispaccamela, G. Gambosi, P. Crescenzi, V. Kann, Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer-Verlag, Berlin, 1999.
    [2] C. Bazgan, L. Brankovic, K. Casel, H. Fernau, On the complexity landscape of the domination chain, In: Proceedings of the Second International Conference on Algorithms and Discrete Applied Mathematics, 2016, 61–72.
    [3] J. A. Bondy, U. S. R. Murty, Graph theory with applications, USA, 1976.
    [4] L. Chen, C. Lu, Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, J. Comb. Optim., 19 (2010), 457–470. doi: 10.1007/s10878-008-9177-6. doi: 10.1007/s10878-008-9177-6
    [5] E. J. Cockayne, O. Favaron, C. M. Mynhardt, Paired-domination in claw-free cubic graphs, Graphs Combinatorics, 20 (2004), 447–456. doi: 10.1007/s00373-004-0577-9. doi: 10.1007/s00373-004-0577-9
    [6] P. Dorbec, S. Gravier, M. A. Henning, Paired-domination in generalized claw-free graphs, J. Comb. Optim., 14 (2007), 1–7. doi: 10.1007/s10878-006-9022-8. doi: 10.1007/s10878-006-9022-8
    [7] P. Dorbec, M. A. Henning, J. Mccoy, Upper total domination versus upper paired-domination, Quaestiones Mathematicae, 30 (2007), 1–12. doi: 10.2989/160736007780205693. doi: 10.2989/160736007780205693
    [8] M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, WH Freeman & Co., New York, 1979.
    [9] T. W. Haynes, P. J. Slater, Paired-domination in graphs, Networks, 32 (1998), 199–206. doi: 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F. doi: 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F
    [10] M. A. Henning, P. Dorbec, Upper paired-domination in claw-free graphs, J. Comb. Optim., 22 (2011), 235–251. doi: 10.1007/s10878-009-9275-0. doi: 10.1007/s10878-009-9275-0
    [11] M. A. Henning, D. Pradhan, Algorithmic aspects of upper paired-domination in graphs, Theor. Comput. Sci., 804 (2020), 98–114. doi: 10.1016/j.tcs.2019.10.045. doi: 10.1016/j.tcs.2019.10.045
    [12] C. Lu, B. Wang, K. Wang, Y. Wu, Paired-domination in claw-free graphs with minimum degree at least three, Discrete Appl. Math., 257 (2019), 250–259. doi: 10.1016/j.dam.2018.09.005. doi: 10.1016/j.dam.2018.09.005
    [13] S. Mishra, K. Sikdar, On the hardness of approximating some NP-optimization problems related to minimum linear ordering problem, Rairo-Theor. Inf. Appl., 35 (2001), 287–309. doi: 10.1051/ita:2001121. doi: 10.1051/ita:2001121
    [14] A. Pandey, B. S. Panda, Domination in some subclasses of bipartite graphs, Discrete Appl. Math., 252 (2015), 169–180. doi: 10.1007/978-3-319-14974-5_17. doi: 10.1007/978-3-319-14974-5_17
    [15] C. H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. Syst. Sci., 43 (1991), 425–440. doi: 10.1016/0022-0000(91)90023-X. doi: 10.1016/0022-0000(91)90023-X
    [16] D. Pradhan, B. S. Panda, Computing a minimum paired-dominating set in strongly orderable graphs, Discrete Appl. Math., 253 (2018), 37–50. doi: 10.1016/j.dam.2018.08.022. doi: 10.1016/j.dam.2018.08.022
    [17] H. Qiao, L. Kang, M. Cardei, D. Du, Paired-domination of trees, J. Global Optim., 25 (2003), 43–54. doi: 10.1023/A:1021338214295. doi: 10.1023/A:1021338214295
    [18] D. B. West, Introduction to graph theory, 2nd ed., Prentice Hall, USA, 2001.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1999) PDF downloads(76) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog