A set $ PD\subseteq V(G) $ in a graph $ G $ is a paired dominating set if every vertex $ v\notin PD $ is adjacent to a vertex in $ PD $ and the subgraph induced by $ PD $ contains a perfect matching. A paired dominating set $ PD $ of $ G $ is minimal if there is no proper subset $ PD'\subset PD $ which is a paired dominating set of $ G $. A minimal paired dominating set of maximum cardinality is called an upper paired dominating set, denoted by $ \Gamma_{pr}(G) $-set. Denote by $ Upper $-$ PDS $ the problem of computing a $ \Gamma_{pr}(G) $-set for a given graph $ G $. Michael et al. showed the APX-completeness of $ Upper $-$ PDS $ for bipartite graphs with $ \Delta = 4 $ [
Citation: Huiqin Jiang, Pu Wu, Jingzhong Zhang, Yongsheng Rao. Upper paired domination in graphs[J]. AIMS Mathematics, 2022, 7(1): 1185-1197. doi: 10.3934/math.2022069
A set $ PD\subseteq V(G) $ in a graph $ G $ is a paired dominating set if every vertex $ v\notin PD $ is adjacent to a vertex in $ PD $ and the subgraph induced by $ PD $ contains a perfect matching. A paired dominating set $ PD $ of $ G $ is minimal if there is no proper subset $ PD'\subset PD $ which is a paired dominating set of $ G $. A minimal paired dominating set of maximum cardinality is called an upper paired dominating set, denoted by $ \Gamma_{pr}(G) $-set. Denote by $ Upper $-$ PDS $ the problem of computing a $ \Gamma_{pr}(G) $-set for a given graph $ G $. Michael et al. showed the APX-completeness of $ Upper $-$ PDS $ for bipartite graphs with $ \Delta = 4 $ [
[1] | G. Ausiello, M. Protasi, A. Marchettispaccamela, G. Gambosi, P. Crescenzi, V. Kann, Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer-Verlag, Berlin, 1999. |
[2] | C. Bazgan, L. Brankovic, K. Casel, H. Fernau, On the complexity landscape of the domination chain, In: Proceedings of the Second International Conference on Algorithms and Discrete Applied Mathematics, 2016, 61–72. |
[3] | J. A. Bondy, U. S. R. Murty, Graph theory with applications, USA, 1976. |
[4] | L. Chen, C. Lu, Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, J. Comb. Optim., 19 (2010), 457–470. doi: 10.1007/s10878-008-9177-6. doi: 10.1007/s10878-008-9177-6 |
[5] | E. J. Cockayne, O. Favaron, C. M. Mynhardt, Paired-domination in claw-free cubic graphs, Graphs Combinatorics, 20 (2004), 447–456. doi: 10.1007/s00373-004-0577-9. doi: 10.1007/s00373-004-0577-9 |
[6] | P. Dorbec, S. Gravier, M. A. Henning, Paired-domination in generalized claw-free graphs, J. Comb. Optim., 14 (2007), 1–7. doi: 10.1007/s10878-006-9022-8. doi: 10.1007/s10878-006-9022-8 |
[7] | P. Dorbec, M. A. Henning, J. Mccoy, Upper total domination versus upper paired-domination, Quaestiones Mathematicae, 30 (2007), 1–12. doi: 10.2989/160736007780205693. doi: 10.2989/160736007780205693 |
[8] | M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, WH Freeman & Co., New York, 1979. |
[9] | T. W. Haynes, P. J. Slater, Paired-domination in graphs, Networks, 32 (1998), 199–206. doi: 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F. doi: 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F |
[10] | M. A. Henning, P. Dorbec, Upper paired-domination in claw-free graphs, J. Comb. Optim., 22 (2011), 235–251. doi: 10.1007/s10878-009-9275-0. doi: 10.1007/s10878-009-9275-0 |
[11] | M. A. Henning, D. Pradhan, Algorithmic aspects of upper paired-domination in graphs, Theor. Comput. Sci., 804 (2020), 98–114. doi: 10.1016/j.tcs.2019.10.045. doi: 10.1016/j.tcs.2019.10.045 |
[12] | C. Lu, B. Wang, K. Wang, Y. Wu, Paired-domination in claw-free graphs with minimum degree at least three, Discrete Appl. Math., 257 (2019), 250–259. doi: 10.1016/j.dam.2018.09.005. doi: 10.1016/j.dam.2018.09.005 |
[13] | S. Mishra, K. Sikdar, On the hardness of approximating some NP-optimization problems related to minimum linear ordering problem, Rairo-Theor. Inf. Appl., 35 (2001), 287–309. doi: 10.1051/ita:2001121. doi: 10.1051/ita:2001121 |
[14] | A. Pandey, B. S. Panda, Domination in some subclasses of bipartite graphs, Discrete Appl. Math., 252 (2015), 169–180. doi: 10.1007/978-3-319-14974-5_17. doi: 10.1007/978-3-319-14974-5_17 |
[15] | C. H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. Syst. Sci., 43 (1991), 425–440. doi: 10.1016/0022-0000(91)90023-X. doi: 10.1016/0022-0000(91)90023-X |
[16] | D. Pradhan, B. S. Panda, Computing a minimum paired-dominating set in strongly orderable graphs, Discrete Appl. Math., 253 (2018), 37–50. doi: 10.1016/j.dam.2018.08.022. doi: 10.1016/j.dam.2018.08.022 |
[17] | H. Qiao, L. Kang, M. Cardei, D. Du, Paired-domination of trees, J. Global Optim., 25 (2003), 43–54. doi: 10.1023/A:1021338214295. doi: 10.1023/A:1021338214295 |
[18] | D. B. West, Introduction to graph theory, 2nd ed., Prentice Hall, USA, 2001. |