Research article

Unicity of solution for a semi-infinite inverse heat source problem

  • Received: 23 October 2021 Revised: 03 January 2022 Accepted: 06 January 2022 Published: 07 February 2022
  • MSC : 35R30, 49J20

  • A semi-infinite inverse source problem in heat conduction equations is considered, where the source term is assumed to be compactly supported in the region. After introducing a suitable artificial boundary, the semi-infinite problem is transformed into a bounded one and the corresponding exact expression of the boundary condition is derived. Then we rigorously prove the uniqueness of the solution of original problem, together with the stability of the corresponding optimal control solution.

    Citation: Zui-Cha Deng, Liu Yang. Unicity of solution for a semi-infinite inverse heat source problem[J]. AIMS Mathematics, 2022, 7(4): 7026-7039. doi: 10.3934/math.2022391

    Related Papers:

  • A semi-infinite inverse source problem in heat conduction equations is considered, where the source term is assumed to be compactly supported in the region. After introducing a suitable artificial boundary, the semi-infinite problem is transformed into a bounded one and the corresponding exact expression of the boundary condition is derived. Then we rigorously prove the uniqueness of the solution of original problem, together with the stability of the corresponding optimal control solution.



    加载中


    [1] I. Bushuyev, Global uniqueness for inverse parabolic problems with final observation, Inverse Probl., 11 (1995), L11.
    [2] P. Cannarsa, J. Tort, M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Probl., 26 (2010), 105003.
    [3] J. R. Cannon, Y. Lin, An inverse problem of finding a parameter in a semilinear heat equation, J. Math. Anal. Appl., 145 (1990), 470–484. https://doi.org/10.1016/0022-247X(90)90414-B doi: 10.1016/0022-247X(90)90414-B
    [4] M. Dehghan, An inverse problems of finding a source parameter in a semilinear parabolic equation, Appl. Math. Model., 25 (2001), 743–754. https://doi.org/10.1016/S0307-904X(01)00010-5 doi: 10.1016/S0307-904X(01)00010-5
    [5] Z. C. Deng, K. Qian, X. B. Rao, L. Yang, G. W. Luo, An inverse problem of identifying the source coefficient in a degenerate heat equation, Inverse Probl. Sci. Eng., 23 (2015), 498–517. https://doi.org/10.1080/17415977.2014.922079 doi: 10.1080/17415977.2014.922079
    [6] P. Duchateau, W. Rundell, Unicity in an inverse problem for an unknown reaction term in a reaction-diffusion equation, J. Differ. Equations, 59 (1985), 155–164. https://doi.org/10.1016/0022-0396(85)90152-4 doi: 10.1016/0022-0396(85)90152-4
    [7] H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Kluwer Academic Publishers, 1996.
    [8] H. D. Han, X. N. Wu, Artificial boundary method–Numerical solutions of partial differential equations on unbounded domains, Beijing: Tsinghua University Press, 2009.
    [9] A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach, J. Math. Anal. Appl., 330 (2007), 766–779. https://doi.org/10.1016/j.jmaa.2006.08.018 doi: 10.1016/j.jmaa.2006.08.018
    [10] V. Isakov, Inverse problems for partial differential equations, New York: Springer, 1998. https://doi.org/10.1007/978-1-4899-0030-2
    [11] V. Isakov, Inverse source problems, American Mathematical Society, 1990.
    [12] V. Isakov, Inverse parabolic problems with the final overdetermination, Commun. Pure Appl. Math., 44 (1991), 185–209. https://doi.org/10.1002/cpa.3160440203 doi: 10.1002/cpa.3160440203
    [13] T. Johansson, D. Lesnic, Determination of a spacewise dependent heat source, J. Comput. Appl. Math., 209 (2007), 66–80. https://doi.org/10.1016/j.cam.2006.10.026 doi: 10.1016/j.cam.2006.10.026
    [14] A. Kirsch, An introduction to the mathematical theory of inverse problem, New York: Springer, 1999.
    [15] C. S. Liu, L. Qiu, J. Lin, Simulating thin plate bending problems by a family of two-parameter homogenization functions, Appl. Math. Model., 79 (2020), 284–299. https://doi.org/10.1016/j.apm.2019.10.036 doi: 10.1016/j.apm.2019.10.036
    [16] M. S. Pilant, W. Rundell, An inverse problem for a nonlinear parabolic equation, Commun. Partial Differ. Equations, 11 (1986), 445–457. https://doi.org/10.1080/03605308608820430 doi: 10.1080/03605308608820430
    [17] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [18] L. Qiu, J. Lin, F. Wang, Q. Qin, C. Liu, A homogenization function method for inverse heat source problems in 3D functionally graded materials, Appl. Math. Model., 91 (2021), 923–933. https://doi.org/10.1016/j.apm.2020.10.012 doi: 10.1016/j.apm.2020.10.012
    [19] X. B. Rao, Y. X. Wang, K. Qian, Z. C. Deng, L. Yang, Numerical simulation for an inverse source problem in a degenerate parabolic equation, Appl. Math. Model., 39 (2015), 7537–7553. https://doi.org/10.1016/j.apm.2015.03.016 doi: 10.1016/j.apm.2015.03.016
    [20] W. Rundell, The determination of a parabolic equation from initial and final data, Proc. Amer. Math. Soc., 99 (1987), 637–642. https://doi.org/10.1090/S0002-9939-1987-0877031-4 doi: 10.1090/S0002-9939-1987-0877031-4
    [21] A. A. Samarskii, P. N. Vabishchevich, Numerical methods for solving inverse problems of mathematical physics, De Gruyter, 2007. https://doi.org/10.1515/9783110205794
    [22] A. Tikhonov, V. Arsenin, Solutions of ill-posed problems, Beijing: Geology Press, 1979.
    [23] A. Tikhonov, A. Samarsky, Equations of mathematical physics, Beijing: Higher Education Press, 1956.
    [24] L. Yang, Z. C. Deng, Uniqueness for an inverse source problem in degenerate parabolic equations, J. Math. Anal. Appl., 488 (2020), 124095. https://doi.org/10.1016/j.jmaa.2020.124095 doi: 10.1016/j.jmaa.2020.124095
    [25] L. Yang, M. Dehghan, J. N. Yu, G. W. Luo, Inverse problem of time-dependent heat sources numerical reconstruction, Math. Comput. Simul., 81 (2011), 1656–1672. https://doi.org/10.1016/j.matcom.2011.01.001 doi: 10.1016/j.matcom.2011.01.001
    [26] L. Yang, Z. C. Deng, J. N. Yu, G. W. Luo, Two regularization strategies for an evolutional type inverse heat source problem, J. Phys. A: Math. Theor., 42 (2009), 365203.
    [27] L. Yang, J. N. Yu, G. W. Luo, Z. C. Deng, Reconstruction of a space and time dependent heat source from finite measurement data, Int. J. Heat Mass Transfer, 55 (2012), 6573–6581. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.064 doi: 10.1016/j.ijheatmasstransfer.2012.06.064
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1592) PDF downloads(49) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog