NASA's Psyche mission will launch in August 2022 and begin a journey of 3.6 years to the metallic asteroid: Psyche, where it will orbits and examine this unique body. This paper presents an alternative opportunity of the Psyche mission as well as the return opportunity to the Earth. It uses Mars's gravity assists to rendezvous with and orbits to the largest metal asteroid in the solar system. The spacecraft orbits around Psyche for approximately 1710 solar days, then starts its return journey. In the outer layer of the proposed methodology, the differential evolution algorithm is used to find the optimal launch, flyby and arrival date. In the inner layer, Lambert's algorithm is used for finding the feasible and optimal space trajectories solution. Considering gravity assists, before the gravity assists impulse, an optimal thrust impulse has been calculated at periapsis of the fly-by planet that gives the maximum $ \Delta\nu_2 $ to the spacecraft.
Citation: Vijil Kumar, Badam Singh Kushvah, Mai Bando. An alternative opportunity of future Psyche mission using differential evolution and gravity assists[J]. AIMS Mathematics, 2022, 7(4): 7012-7025. doi: 10.3934/math.2022390
NASA's Psyche mission will launch in August 2022 and begin a journey of 3.6 years to the metallic asteroid: Psyche, where it will orbits and examine this unique body. This paper presents an alternative opportunity of the Psyche mission as well as the return opportunity to the Earth. It uses Mars's gravity assists to rendezvous with and orbits to the largest metal asteroid in the solar system. The spacecraft orbits around Psyche for approximately 1710 solar days, then starts its return journey. In the outer layer of the proposed methodology, the differential evolution algorithm is used to find the optimal launch, flyby and arrival date. In the inner layer, Lambert's algorithm is used for finding the feasible and optimal space trajectories solution. Considering gravity assists, before the gravity assists impulse, an optimal thrust impulse has been calculated at periapsis of the fly-by planet that gives the maximum $ \Delta\nu_2 $ to the spacecraft.
[1] | J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M. Nieto, S. G. Turyshev, Study of the anomalous acceleration of Pioneer 10 and 11, Phys. Rev. D, 65 (2002), 082004. https://doi.org/10.1103/PhysRevD.65.082004 doi: 10.1103/PhysRevD.65.082004 |
[2] | R. Armellin, D. Gondelach, J. F. San Juan, Multiple revolution perturbed Lambert problem solvers, J. Guid. Control Dynam., 41 (2018), 2019–2032. https://doi.org/10.2514/1.G003531 doi: 10.2514/1.G003531 |
[3] | R. H. Battin, Lambert's problem revisited, AIAA J., 15 (1977), 707–713. https://doi.org/10.2514/3.60680 |
[4] | R. H. Battin, An introduction to the mathematics and methods of astrodynamics, Reston, Virginia: AIAA, 1999. |
[5] | E. R. Lancaster, R. C. Blanchard, R. A. Devaney, A note on Lambert's theorem, J. Spacecraft Rockets, 3 (1966), 1436–1438. |
[6] | D. Brownlee, The stardust mission: Analyzing samples from the edge of the solar system, Annu. Rev. Earth Pl. Sci., 42 (2014), 179–205. https://doi.org/10.1146/annurev-earth-050212-124203 |
[7] | U. K. Chakraborty, Advances in differential evolution, Berlin, Heidelber: Springer, 2008. https://doi.org/10.1007/978-3-540-68830-3 |
[8] | W. Hart, G. M. Brown, S. M. Collins, M. D. S. S. Pich, P. Fieseler, D. Goebel, et al., Overview of the spacecraft design for the Psyche mission concept, In: 2018 IEEE Aerospace Conference, 2018, 1–20. https://doi.org/10.1109/AERO.2018.8396444 |
[9] | D. Izzo, Revisiting Lambert's problem, Celest. Mech. Dyn. Astr., 121 (2015), 1–15. https://doi.org/10.1007/s10569-014-9587-y |
[10] | V. Kumar, B. S. Kushvah, Computation of periodic orbits around $L_1$ and $L_2$ using PSO technique, Astron. Rep., 64 (2020), 82–93. https://doi.org/10.1134/S1063772920010059 doi: 10.1134/S1063772920010059 |
[11] | D. S. Lauretta, S. S. Balram-Knutson, E. Beshore, W. V. Boynton, C. D. D'Aubigny, D. N. DellaGiustina, et al., Osiris-rex: Sample return from asteroid (101955) Bennu, Space Sci. Rev., 212 (2017), 925–984. https://doi.org/10.1007/s11214-017-0405-1 doi: 10.1007/s11214-017-0405-1 |
[12] | Z. Q. Luo, G. M. Dai, L. Peng, A novel model for the optimization of interplanetary trajectory using evolutionary algorithm, J. Comput., 6 (2011), 2243–2248. |
[13] | D. Marsh, J. Catchen, V. Sereno, D. Trofimov, Evolution of the preliminary fault management architecture and design for the Psyche mission, In: 2020 IEEE Aerospace Conference, 2020, 1–15. https://doi.org/10.1109/AERO47225.2020.9172741 |
[14] | M. G. Martin, W. A. Hoey, J. M. Alred, C. E. Soares, Novel contamination control model development and application to the Psyche asteroid mission, In: 2020 IEEE Aerospace Conference, 2020, 1–9. https://doi.org/10.1109/AERO47225.2020.9172321 |
[15] | M. Meltzer, Mission to Jupiter: A history of the Galileo project, NASA STI/Recon Tech. Rep. N, 7 (2007), 13975. |
[16] | D. Y. Oh, D. M. Goebel, L. Elkins-Tanton, C. Polanskey, P. Lord, S. Tilley, et al., Psyche: Journey to a metal world, In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016. https://doi.org/10.2514/6.2016-4541 |
[17] | V. S. Özsoy, M. G. Ünsal, H. H. Örkcü, Use of the heuristic optimization in the parameter estimation of generalized gamma distribution: Comparison of GA, DE, PSO and SA methods, Computation. Stat., 35 (2020), 1895–1925. https://doi.org/10.1007/s00180-020-00966-4 doi: 10.1007/s00180-020-00966-4 |
[18] | L. Peng, Y. Z. Wang, G. M. Dai, Y. M. Chang, F. J. Chen, Optimization of the Earth-Moon low energy transfer with differential evolution based on uniform design, In: IEEE Congress on Evolutionary Computation, 2010, 1–8. https://doi.org/10.1109/CEC.2010.5586384 |
[19] | J. E. Prussing, Simple proof of the global optimality of the Hohmann transfer, J. Guidance, 15 (1992), 1037–1038. https://doi.org/10.2514/3.20941 doi: 10.2514/3.20941 |
[20] | M. D. Rayman, T. C. Fraschetti, C. A. Raymond, C. T. Russell, Dawn: A mission in development for exploration of main belt asteroids Vesta and Ceres, Acta Astronaut., 58 (2006), 605–616. https://doi.org/10.1016/j.actaastro.2006.01.014 doi: 10.1016/j.actaastro.2006.01.014 |
[21] | H. Schaub, J. L. Junkins, Analytical mechanics of space systems, Reston, Virginia: AIAA, 2003. |
[22] | J. A. Sims, Delta-V gravity-assist trajectory design: Theory and practice, Purdue University, 1996. |
[23] | J. S. Snyder, V. H. Chaplin, D. M. Goebel, R. R. Hofer, A. Lopez Ortega, I. G. Mikellides, et al., Electric propulsion for the Psyche mission: Development activities and status, In: AIAA Propulsion and Energy 2020 Forum, 2020. https://doi.org/10.2514/6.2020-3607 |
[24] | J. S. Snyder, D. M. Goebel, V. Chaplin, A. L. Ortega, I. G. Mikellides, F. Aghazadeh et al., Electric propulsion for the Psyche mission, In: 36th International Electric Propulsion Conference, 2019. |
[25] | Y. Tsuda, M. Yoshikawa, T. Saiki, S. Nakazawa, S. I. Watanabe, Hayabusa2-sample return and kinetic impact mission to near-earth asteroid Ryugu, Acta Astronaut., 156 (2019), 387–393. https://doi.org/10.1016/j.actaastro.2018.01.030 doi: 10.1016/j.actaastro.2018.01.030 |
[26] | M. Vasile, P. De Pascale, Preliminary design of multiple gravity-assist trajectories, J. Spacecraft Rockets, 43 (2006), 794–805. https://doi.org/10.2514/1.17413 doi: 10.2514/1.17413 |
[27] | S. Wagner, B. Wie, Hybrid algorithm for multiple gravity-assist and impulsive Delta-V maneuvers, J. Guidance, 38 (2015), 2096–2107. https://doi.org/10.2514/1.G000874 doi: 10.2514/1.G000874 |
[28] | G. Whiffen, Mystic: Implementation of the static dynamic optimal control algorithm for high-fidelity, low-thrust trajectory design, In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006. https://doi.org/10.2514/6.2006-6741 |
[29] | Z. Yang, Y. Z. Luo, J. Zhang, G. J. Tang, Homotopic perturbed Lambert algorithm for long-duration rendezvous optimization, J. Guidance, 38 (2015), 2215–2223. https://doi.org/10.2514/1.G001198 doi: 10.2514/1.G001198 |
[30] | M. Yoshikawa, J. Kawaguchi, A. Fujiwara, A. Tsuchiyama, Hayabusa sample return mission, In: Asteroids IV, Tucson: University of Arizona, 2015,397–418. https://doi.org/10.2458/azu_uapress_9780816532131-ch021 |
[31] | X. Zeng, Z. Liu, W. J. Fu, F. Zhao, Application of improved differential evolution algorithm in reactive power optimization, Power Syst. Tech., 2 (2012), 121–125. |
[32] | G. Zhang, Terminal-velocity-based Lambert algorithm, J. Guidance, 43 (2020), 1529–1539. https://doi.org/10.2514/1.G004964 doi: 10.2514/1.G004964 |
[33] | G. Zhang, D. Zhou, D. Mortari, Optimal two-impulse rendezvous using constrained multiple-revolution Lambert solutions, Celest. Mech. Dyn. Astr., 110 (2011), 305–317. https://doi.org/10.1007/s10569-011-9349-z doi: 10.1007/s10569-011-9349-z |
[34] | G. Zhang, D. Zhou, D. Mortari, M. R. Akella, Covariance analysis of Lambert's problem via Lagrange's transfer-time formulation, Aerosp. Sci. Technol., 77 (2018), 765–773. https://doi.org/10.1016/j.ast.2018.03.039 doi: 10.1016/j.ast.2018.03.039 |
[35] | M. C. Zuo, G. M. Dai, L. Peng, Z. Tang, A differential evolution-based optimization tool for interplanetary transfer trajectory design, arXiv Preprint, 2021. Available from: https://arXiv.org/abs/2011.06780. |