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1. Introduction

Let K be an abelian category or a triangulated category and X,Y be two subcategories. We denote
by X ∗ Y the subcategory which consists of objects Z in K such that there is a short exact sequence

0→ X → Z → Y → 0

with X ∈ X and Y ∈ Y or there is a triangle

X → Z → Y → ΣX

with X ∈ X and Y ∈ Y, where Σ is the shift functor. It is called the extension subcategory of Y
by X. This is a classic research object and has been used extensively in the representation theory of
algebra. Gentle and Todorov [6] proved that in an abelian category with enough projective objects,
the extension subcategory of two covariantly finite subcategories is covariantly finite. Chen [5] proved
a triangulated version of Gentle-Todorov’s result. Jorgensen and Kato [10] gave some necessary and
sufficient conditions for X ∗ Y to be triangulated for a pair of triangulated subcategories X and Y.
Yoshizawa considered the extension subcategory when the two given subcategories are Serre in [14].

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024073


1495

In order to discuss cotorsion pairs in a more general case, Nakaoka and Palu [12] introduced the
notion of extriangulated categories. In particular, exact categories and extension-closed subcategories
of triangulated categories are typical examples of extriangulated categories. Hence, many results told
on exact categories and triangulated categories can be unified in the same framework [7, 11, 13, 15].
However, it is worth mentioning that there exist numerous examples of extriangulated categories that
are neither triangulated nor exact categories (see [8, 12, 15]). Recently, Adachi, Enomoto and
Tsukamoto [1] introduced the notion of extriangulated categories with negative first extensions (that
is, an additive bifunctors E−1 satisfying certain conditions) and s-torsion pairs as a general framework
for the studies of t-structures on triangulated categories and torsion pairs in abelian categories. Let K
be an extriangulated category with a negative first extension. According to [1], a pair (T ,F ) of
subcategories in K is called an s-torsion pair if it is a torsion pair in the usual sense and if
E−1(T ,F ) = 0 holds. In this case, we also call T (respectively, F ) a torsion class (respectively,
torsion-free class), and they are mutually determined. Exact categories and triangulated categories
naturally admit negative first extension structures, then torsion pairs in exact categories and
t-structures on triangulated categories are exactly s-torsion pairs [1]. Let si = (Ti,Fi) be an s-torsion
pair in K for any i = 1, 2. We have the following natural question: Is the extension subcategory
T1 ∗ T2 of T2 by T1 a torsion class? Bondal provided some sufficient condition for the intersection of
two t-structures on a triangulated category to be a t-structure in terms of consistent pairs [4]. In this
paper, we extend the notion of the consistent pair to the extriangulated setup, then give a necessary
and sufficient condition for T1 ∗ T2 to be a torsion class. More specifically, we show that
(T1 ∗ T2,F1 ∩ F2) is an s-torsion pair if and only if (s1, s2) is an upper consistent pair, which
generalizes Bondal’s result [4, Proposition 6]. We also give some conditions under which the
operations of ∗ and intersection satisfy the distributive laws. For a τ-rigid module M = M1 ⊕ M2 over
a finite-dimensional algebra, we denote by FacM the subcategory of the module category which
consists of all factor modules of finite direct sums of copies of M. As an application of the main
theorem, we show that FacM is equal to the extension subcategory of FacM2 by FacM1 (see
Proposition 4.4 for details).

We include some notations here. Throughout this paper, we assume that every category is skeletally
small that is, the isomorphism classes of objects form a set, and K denotes an additive category. The
symbolKop denotes the opposite category ofK . When we say thatD is a subcategory ofK , we always
mean that D is a full subcategory which is closed under isomorphisms. For a collection X of objects
in K , we define X⊥ := {C ∈ K|HomK (X,C) = 0} and ⊥X := {C ∈ K|HomK (C,X) = 0}.

2. Preliminaries

We briefly recall some definitions and some needed properties of extriangulated categories from [12]
and s-torsion pairs from [1].

Let K be an additive category equipped with an additive bifunctor

E : Kop × K → Ab,

where Ab is the category of abelian groups. For any objects A,C ∈ K , an element δ ∈ E(C, A) is called
an E-extension. Let s be a correspondence which associates an equivalence class

s(δ) = [A
f
−→ B

g
−→ C]
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to any E-extension δ ∈ E(C, A). Such s is called a realization of E if it makes the diagrams in [12,
Definition 2.9] commutative. A triplet (C,E, s) is called an extriangulated category if it satisfies the
following conditions.

• (ET1) E : Kop × K → Ab is an additive bifunctor.
• (ET2) s is an additive realization of E.
• (ET3) Let δ ∈ E(C, A) and δ

′

∈ E(C
′

, A
′

) be any pair of E-extensions, realized as

s(δ) = [A
x
−→ B

y
−→ C], s(δ

′

) = [A
′ x

′

−→ B
′ y

′

−→ C
′

].

For any commutative square

A

a
��

x // B

b
��

y // C

A
′ x

′

// B
′ y

′

// C
′

in K , there exists a morphism (a, c) : δ→ δ
′

satisfying cy = y
′

b.
• (ET3)op Dual of (ET3).
• (ET4) Let δ ∈ E(C, A) and δ

′

∈ E(F, B) be E-extensions realized by

A
x
−→ B

y
−→ C and B

u
−→ D

v
−→ F

respectively, then there exists an object E ∈ C and a commutative diagram

A x // B

u
��

y // C

s
��

A
z // D

v
��

w // E

t
��

F F

where all rows and columns are E-extensions in K .
• (ET4)op Dual of (ET4).

Definition 2.1. ( [12]) Let K be an extriangulated category.

(1) A sequence A
f
−→ B

g
−→ C inK is called a conflation if it realizes some E-extension δ ∈ E(C, A).

The pair (A
f
−→ B

g
−→ C, δ) is called an E-triangle ( or s-conflation), and it is written in the following

way:

A
f
−→ B

g
−→ C

δ
d.

(2) Let A
x
→ B

y
→ C

δ
d and A

′ x
′

→ B
′ y

′

→ C
′ δ

′

d be any pair of E-triangles. If a triplet (a, b, c) realizes
(a, c) : δ→ δ

′

, then we write it as

A

a
��

x // B

a
��

y // C

c
��

δ //

A
′ x

′

// B
′ y

′

// C
′ δ

′

//
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and call (a, b, c) a morphism of E-triangles.
(3) Let X and Y be subcategories of K and let X ∗ Y denote the subcategory of K consisting of

M ∈ K which admits an E-triangle X → M → Y d in K with X ∈ X and Y ∈ Y. The subcategory
X is said to be extension-closed (or equivalently, closed under extensions) if X ∗ X ⊆ X. Note that the
operation ∗ on subcategories is associative by (ET4) and (ET4)op.

Exact categories and extension-closed subcategories of triangulated categories are extriangulated
categories. The extension-closed subcategories of an extriangulated category are again extriangulated
categories (see [12, Remark 2.18]). The following proposition gives a criterion for an extension
subcategory of two given extension-closed subcategories to be extension-closed.

Proposition 2.2. Let X and Y be extension-closed subcategories of an extriangulated category, then
the following conditions are equivalent.

(1) X ∗ Y is an extension-closed subcategory.
(2) Y ∗ X ⊆ X ∗ Y.

Proof. (1) implies (2). For any C ∈ Y ∗ X, there exists an E-triangle

Y → C → X d

such that Y ∈ Y and X ∈ X. Note that Y is in Y ⊆ X ∗Y and X is in X ⊆ X ∗Y. Since X ∗Y is closed
under extensions by the assumption (1), then the E-triangle above implies that C ∈ X ∗ Y.

(2) implies (1). Since the operation ∗ is associative and Y ∗ X ⊆ X ∗ Y, we have the following
formulas

(X ∗ Y) ∗ (X ∗ Y) = X ∗ (Y ∗ X) ∗ Y ⊆ X ∗ (X ∗ Y) ∗ Y = (X ∗ X) ∗ (Y ∗ Y) ⊆ X ∗ Y.

Hence X ∗ Y is closed under extensions. □

The following is a basic property of extriangulated categories.

Lemma 2.3. ( [12, Proposition 3.3]) Let K be an extriangulated category. For any E-triangle A →
B→ C d, we have the following exact sequences.

HomK (C,−)→ HomK (B,−)→ HomK (A,−)→ E(C,−)→ E(B,−)→ E(A,−);
HomK (−, A)→ HomK (−, B)→ HomK (−,C)→ E(−, A)→ E(−, B)→ E(−,C).

Definition 2.4. ( [1]) Let K be an extriangulated category. A negative first extension structure on K
consists of the following data.

• (NE1) E−1 : Kop × K → Ab is an additive bifunctor.
• (NE2) For each δ ∈ E(C, A), there exist two natural transformations

δ−1
♯

: E−1(−,C)→ HomK (−, A), and δ♯
−1 : E−1(A,−)→ HomK (C,−)

such that for each E-triangle A
f
−→ B

g
−→ C d and each W ∈ K , two sequences

E−1(W, A)
E−1(W, f )
−→ E−1(W, B)

E−1(W,g)
−→ E−1(W,C)

(δ−1
♯

)W
−→ HomK (W, A)

HomK (W, f )
−→ HomK (W, B),

E−1(C,W)
E−1(g,W)
−→ E−1(B,W)

E−1( f ,W)
−→ E−1(A,W)

(δ♯
−1)W
−→ HomK (C,W)

HomK (g,W)
−→ HomK (B,W),
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are exact.

Thus, (K ,E, s,E−1) is called an extriangulated category with a negative first extension.

In what follows, we assume thatK is an extriangulated category with a negative first extension E−1.

Definition 2.5. ( [1]) A pair (T ,F ) of subcategories of K is called an s-torsion pair in K if it satisfies
the following three conditions.

• (STP1) K = T ∗ F .
• (STP2) HomK (T ,F ) = 0.
• (STP3) E−1(T ,F ) = 0.

In this case, T (respectively, F ) is called a torsion class (respectively, torsion-free class) in K .

Let D be a triangulated category with the shift functor Σ. By regarding triangulated category D
as the extriangulated category with the negative first extension E−1(C, A) = HomD(C,Σ−1A) for all
A,C ∈ D, then t-structures on D are exactly s-torsion pairs in D. By regarding an exact category E
as the extriangulated category with the negative first extension E−1 = 0, then torsion pairs in the exact
category E are exactly s-torsion pairs in E [1].

The following proposition shows that torsion class and torsion-free class in K are mutually
determined.

Lemma 2.6. ( [1, Proposition 3.2]) Let (T ,F ) be an s-torsion pair inK , then the following statements
hold.

(1) T ⊥ = F .
(2) ⊥F = T .

In particular, T and F are extension-closed subcategories which are closed under direct summands.

Lemma 2.7. ( [1, Proposition 3.7]) Let (T ,F ) be an s-torsion pair in K . For each C ∈ K , there
uniquely exists an E-triangle

TC → C → FC d

such that TC ∈ T and FC ∈ F (up to isomorphism of E-triangles).

Let (T ,F ) be an s-torsion pair in K . According to Lemma 2.7, (T ,F ) gives functors t : K → T
and f : K → F and natural transformations t→ idC → f such that there uniquely exists an E-triangle

tC → C → fC d (2.1)

for each C ∈ K . We call the functors (t, f) the torsion functors of the s-torsion pair (T ,F ). An
E-triangle given as (2.1) is called a canonical E-triangle with respect to the torsion pair (T ,F ).

3. Main results

The concept of the consistent pair of t-structures on a triangulated category has been introduced by
Bondal in [4]. We extend this notion to an extriangulated category with a negative first extension.
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Definition 3.1. Let K be an extriangulated category with a negative first extension. Let si := (Ti,Fi)
be an s-torsion pair in K with the torsion functors (ti, fi) for any i = 1, 2. If F1 is stable under the
functor f2 that is, f2F1 ⊂ F1, then the pair (s1, s2) is called an upper consistent pair of s-torsion pairs.
If T2 is stable under the functor t1 that is, t1T2 ⊂ T2, then the pair (s1, s2) is called a lower consistent
pair of s-torsion pairs. A pair is said to be consistent if it is upper or lower consistent.

There exists inconsistent pairs of s-torsion pairs [4, Subsection 1.2]. The following lemma provides
a necessary condition.

Lemma 3.2. Let si := (Ti,Fi) be an s-torsion pairs in K for any i = 1, 2.
(1) Suppose that E(T1,T2) = 0, then (s1, s2) is upper consistent.
(2) Suppose that E(F1,F2) = 0, then (s1, s2) is lower consistent.

Proof. We only prove (1); the proof of (2) is similar. Denote by (ti, fi) the torsion functors of (Ti,Fi),
i = 1, 2. For any C ∈ F1, take the canonical E-triangle

t2C → C → f2C d

with respect to the s-torsion pair (T2,F2). Applying HomK (T1,−) to the preceding E-triangle deduces
an exact sequence

0 = HomK (T1,C)→ HomK (T1, f2C)→ E(T1, t2C).

By assumption, E(T1, t2C) = 0, so HomK (T1, f2C) = 0. It follows from Lemma 2.6 that f2C ∈ F1.
Therefore, (s1, s2) is upper consistent. □

Lemma 3.3. Let A
f
−→ B

g
−→ C d be an E-triangle, then the following assertions hold.

(1) If f = 0, then g is a split monomorphism.
(2) If g = 0, then f is a split epimorphism.

Proof. We only prove (1); the proof of (2) is similar. First there exists an E-triangle 0 → B
idB
−→ B d,

then we consider the following diagram

A

��

0 // B
g // C //

0 // B
idB // B //

where the left square is commutative. By (ET3) there exists a morphism h : C → B such that the
following diagram

A

��

0 // B
g // C

h
��

//

0 // B
idB // B //

commutates. Hence hg = idB. □

Now we can show the main theorem of this paper.

AIMS Mathematics Volume 9, Issue 1, 1494–1508.
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Theorem 3.4. Let K be an extriangulated category with a negative first extension. Let si := (Ti,Fi)
be an s-torsion pair in K for any i = 1, 2, then

(1) (T1 ∗ T2,F1 ∩ F2) is an s-torsion pair in K if and only if (s1, s2) is upper consistent.
(2) (T1 ∩ T2,F1 ∗ F2) is an s-torsion pair in K if and only if (s1, s2) is lower consistent.

Proof. We only prove (1); the proof of (2) is similar. Denote by (ti, fi) the torsion functors of (Ti,Fi),
i = 1, 2. We first show the necessity. Assume that (T1 ∗ T2,F1 ∩ F2) is an s-torsion pair in K , then for
any C ∈ F1, there exists a canonical E-triangle

T → C → F d (3.1)

with respect to (T1 ∗ T2,F1 ∩ F2) such that T ∈ T1 ∗ T2 and F ∈ F1 ∩ F2 ⊂ F2. It suffices to prove
that T is in T2. Indeed, if it is done, then the E-triangle (3.1) is also a canonical E-triangle with respect
to the s-torsion pair (T2,F2) by Lemma 2.7. Therefore f2C = F ∈ F1 ∩ F2 ⊂ F1, so (s1, s2) is upper
consistent. Since T ∈ T1 ∗ T2, there exists an E-triangle

T1
a
→ T

b
→ T2 d

such that T1 ∈ T1 and T2 ∈ T2. Applying HomK (T1,−) to the E-triangle (3.1), we have an exact
sequence

E−1(T1, F)→ HomK (T1,T )→ HomK (T1,C).

Since (T1 ∗ T2,F1 ∩ F2) is an s-torsion pair and T1 ∈ T1 ⊂ T1 ∗ T2, we have E−1(T1, F) = 0. Since
(T1,F1) is an s-torsion pair, we have HomK (T1,C) = 0, so a ∈ HomK (T1,T ) = 0. By Lemma 3.3, b
is a split monomorphism and T is a direct summand of T2. It followes from Lemma 2.6 that T ∈ T2.
Hence, (s1, s2) is an upper consistent pair.

Let (s1, s2) be an upper consistent pair. To prove the sufficiency, we verify the conditions (STP1),
(STP2) and (STP3) of the definition of s-torsion pair individually.

(STP1) Let C ∈ K . There exists a canonical E-triangle

t1C → C → f1C d (3.2)

with respect to the s-torsion pair (T1,F1). Similarly, since (T2,F2) is an s-torsion pair in K , there
exists a canonical E-triangle

t2f1C → f1C → f2f1C d . (3.3)

On the basis of the assumption that (s1, s2) is upper consistent, we have f2f1C ∈ F1 ∩ F2. Applying
(ET4)op to (3.2) and (3.3) induces a commutative diagram

t1C // A

��

// t2f1C

��

//

t1C // C

��

// f1C

��

//

f2f1C

��

f2f1C

��

AIMS Mathematics Volume 9, Issue 1, 1494–1508.
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where all rows and columns are E-triangles. In the top horizontal E-triangle, since t1C ∈ T1 and
t2f1C ∈ T2, then A ∈ T1 ∗ T2. Thus we obtain C ∈ (T1 ∗ T2) ∗ (F1 ∩ F2) by the left vertical E-triangle
A→ C → f2f1C d, meaning that K = (T1 ∗ T2) ∗ (F1 ∩ F2).

(STP2) Since (T1,F1) and (T2,F2) are s-torsion pairs, we obtain that C(Ti,F1 ∩ F2) = 0, for any
i = 1, 2. This implies that C(T1 ∗ T2,F1 ∩ F2) = 0 by Lemma 2.3.

(STP3) Since (T1,F1) and (T2,F2) are s-torsion pairs, we obtain that E−1(Ti,F1 ∩ F2) = 0, for
any i = 1, 2. This implies that E−1(T1 ∗ T2,F1 ∩ F2) = 0 by (NE2). This completes the proof of the
sufficiency. □

Remark 3.5. (1) Let s1 := (T ,F ) be an s-torsion pair in K and s2 := (K , 0) be a trivial s-torsion pair.
Since (T ∗ K ,F ∩ 0) = (K , 0), (T ∩ K ,F ∗ 0) = (T ,F ), by Theorem 3.4, (s1, s2) is simultaneously
lower and upper consistent.

(2) Let K be a triangulated category, then Theorem 3.4 recovers [4, Proposition 6].

When K is a triangulated category, the following corollary is an analogue of [9, Proposition 2.4]
which plays a crucial role in the study of n-cluster tilting subcategories.

Corollary 3.6. Let (Ti,Fi) be an s-torsion pair in K for any i ≥ 1.
(1) Suppose that E(Ti,T j) = 0, for any i < j. Put

Xn := T1 ∗ T2 ∗ · · · ∗ Tn, Yn :=
n⋂

i=1
Fi,

then (Xn,Yn) is an s-torsion pair in K .
(2) Suppose that E(Fi,F j) = 0 for any i < j. Put

Xn :=
n⋂

i=1
Ti, Yn := F1 ∗ F2 ∗ · · · ∗ Fn,

then (Xn,Yn) is an s-torsion pair in K .

Proof. We only prove (1); the proof of (2) is similar. We show by induction on n. The case n = 1 is
obvious. Assume that the assertion is true for n− 1 that is, (Xn−1,Yn−1) is an s-torsion pair inK . Since
E(Ti,Tn) = 0 for any i < n, by Lemma 2.3 we obtain that

E(Xn−1,Tn) = E(T1 ∗ T2 ∗ · · · ∗ Tn−1,Tn) = 0.

It follows from Lemma 3.2 that ((Xn−1,Yn−1), (Tn,Fn)) is upper consistent. By Theorem 3.4, (Xn−1 ∗

Tn,Yn−1 ∩ Fn) = (Xn,Yn) is an s-torsion pair in K . □

The following lemma is useful in constructing consistent pairs.

Lemma 3.7. Let (T ,F ) be an s-torsion pair in K . Let A
f
−→ B

g
−→ C d be an E-triangle, then the

following assertions hold.
(1) If B,C ∈ F , then A ∈ F .
(2) If A, B ∈ T , then C ∈ T .

Proof. We only prove (1); the proof of (2) is similar. Applying HomK (T ,−) to the given E-triangle,
we have an exact sequence

E−1(T ,C)→ HomK (T , A)→ HomK (T , B).

AIMS Mathematics Volume 9, Issue 1, 1494–1508.
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Since the left hand side and right hand side vanish, we obtain HomK (T , A) = 0. It follows from
Lemma 2.6 that A ∈ F . □

Next we will construct some new consistent pairs by using the known ones, which enables us to
determine the new s-torsion pairs. Meanwhile, the conditions under which the operations of ∗ and
intersection satisfy the distributive laws are given.

Corollary 3.8. Let si := (Ti,Fi) be an s-torsion pair in K for any i = 1, 2, 3. Suppose that (s1, s2),
(s1, s3) are upper consistent and (s2, s3) is lower consistent, then the following assertions hold.

(1) ((T1,F1), (T2 ∩ T3,F2 ∗ F3)) is upper consistent.
(2) ((T1 ∗ T2,F1 ∩ F2), (T1 ∗ T3,F1 ∩ F3)) is lower consistent.
(3) T1 ∗ (T2 ∩ T3) = (T1 ∗ T2) ∩ (T1 ∗ T3), and F1 ∩ (F2 ∗ F3) = (F1 ∩ F2) ∗ (F1 ∩ F3).

Proof. Denote by (ti, fi) the torsion functors of (Ti,Fi) for any i = 1, 2, 3.
(1) By Theorem 3.4, (T2 ∩ T3,F2 ∗ F3) is an s-torsion pair in K . Denote by (t23, f23) the torsion

functors of (T2 ∩ T3,F2 ∗ F3). We need to prove that f23F1 ⊂ F1. Let C ∈ F1. Since (T2,F2) and
(T3,F3) are s-torsion pairs, we have the following two canonical E-triangles

t3C → C → f3C d, (3.4)
t2t3C → t3C → f2t3C d . (3.5)

Since (s2, s3) is lower consistent and t3C ∈ T3, we have t2t3C ∈ T2 ∩ T3. Applying (ET4) to (3.4)
and (3.5) induces a commutative diagram

t2t3C // t3C

��

// f2t3C

��

//

t2t3C // C

��

// A

��

//

f3C

��

f3C

��

where all rows and columns are E-triangles. Thus there exists an E-triangle

t2t3C → C → Ad (3.6)

such that A ∈ F2 ∗ F3, so the E-triangle (3.6) is a canonical E-triangle with respect to the s-torsion pair
(T2∩T3,F2 ∗F3). Since (s1, s3) is upper consistent and C ∈ F1, we have f3C ∈ F1, then it follows from
the E-triangle t3C → C → f3C d and Lemma 3.7 that t3C ∈ F1. Since (s1, s2) is upper consistent,
we have f2t3C ∈ F1. Since the torsion-free class F1 is closed under extensions, we obtain A ∈ F1 by
the E-triangle f2t3C → A → f3C d and the canonical E-triangle (3.6) implies that f23C = A ∈ F1.
Therefore, ((T1,F1), (T2 ∩ T3,F2 ∗ F3)) is upper consistent.

(2) By Theorem 3.4, (T1 ∗ T2,F1 ∩ F2) and (T1 ∗ T3,F1 ∩ F3) are s-torsion pairs in K . Denote
by (t12, f12) the torsion functors of (T1 ∗ T2,F1 ∩ F2). To complete the proof, we need to show that
t12(T1 ∗ T3) ⊂ T1 ∗ T3. Let C ∈ T1 ∗ T3, then there exists an E-triangle

T1 → C → T3 d (3.7)

AIMS Mathematics Volume 9, Issue 1, 1494–1508.
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such that T1 ∈ T1 and T3 ∈ T3. Since (T1,F1) and (T3,F3) are s-torsion pairs, we have the following
two canonical E-triangles

t1T3 → T3 → f1T3 d, (3.8)

t3f1T3
a
→ f1T3

b
→ f3f1T3 d . (3.9)

Applying HomK (−, f3f1T3) to the E-triangle (3.8), we have an exact sequence

E−1(t1T3, f3f1T3)→ HomK (f1T3, f3f1T3)→ HomK (T3, f3f1T3).

Notice that (s1, s3) is upper consistent and f1T3 ∈ F1, and we have f3f1T3 ∈ F1 ∩ F3. Since (T1,F1)
is an s-torsion pair and t1T3 ∈ T1, f3f1T3 ∈ F1, we have E−1(t1T3, f3f1T3) = 0. Since (T3,F3) is an s-
torsion pair and T3 ∈ T3, f3f1T3 ∈ F3, we have HomK (T3, f3f1T3) = 0 and b ∈ HomK (f1T3, f3f1T3) = 0.
It follows from Lemma 3.3 that a is a split epimorphism, so f1T3 is a direct summand of t3f1T3. By
Lemma 2.6 , f1T3 ∈ T3. Consider the canonical E-triangle

t2f1T3 → f1T3 → f2f1T3 d (3.10)

with respect to the s-torsion pair (T2,F2). Since (s2, s3) is lower consistent and f1T3 ∈ T3, we have
t2f1T3 ∈ T2 ∩ T3. Since (s1, s2) is upper consistent and f1T3 ∈ F1, we have

f2f1T3 ∈ F1 ∩ F2. (3.11)

Applying (ET4)op to (3.8) and (3.10) induces a commutative diagram

t1T3
// A

��

// t2f1T3

��

//

t1T3
// T3

��

// f1T3

��

//

f2f1T3

��

f2f1T3

��

where all rows and columns are E-triangles. Thus there exists an E-triangle

A→ T3 → f2f1T3 d (3.12)

such that A ∈ T1 ∗ (T2 ∩ T3). Moreover, applying (ET4)op to (3.7) and (3.12) induces a commutative
diagram
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T1
// B

��

// A

��

//

T1
// C

��

// T3

��

//

f2f1T3

��

f2f1T3

��

where all rows and columns are E-triangles, which gives an E-triangle

B→ C → f2f1T3 d . (3.13)

Since the torsion class T1 is closed under extensions, we obtain B ∈ T1∗(T1∗(T2∩T3)) = T1∗(T2∩T3)
by the E-triangle T1 → B → A d. It follows from Lemma 2.7 that the canonical E-triangle uniquely
exists. Since B ∈ T1 ∗ (T2 ∩ T3) ⊂ T1 ∗ T2 and f2f1T3 ∈ F1 ∩ F2 by (3.11), the E-triangle (3.13) is a
canonical E-triangle with respect to the s-torsion pair (T1 ∗T2,F1∩F2), so t12C = B ∈ T1 ∗ (T2∩T3) ⊂
T1 ∗ T3. Therefore, ((T1 ∗ T2,F1 ∩ F2), (T1 ∗ T3,F1 ∩ F3)) is lower consistent.

(3) By Theorem 3.4 and the results of (1) and (2), we have the following two s-torsion pairs

((T1 ∗ (T2 ∩ T3),F1 ∩ (F2 ∗ F3)) and ((T1 ∗ T2) ∩ (T1 ∗ T3), (F1 ∩ F2) ∗ (F1 ∩ F3)).

Hence it suffices to prove that F1 ∩ (F2 ∗ F3) = (F1 ∩ F2) ∗ (F1 ∩ F3). It is easy to check that
(F1 ∩F2) ∗ (F1 ∩F3) ⊂ F1 ∩ (F2 ∗ F3). Conversely, let C ∈ F1 ∩ (F2 ∗ F3), then we have the following
three E-triangles

F2 → C → F3 d, (3.14)
t3C → C → f3C d, (3.15)

t2t3C
a
→ t3C

b
→ f2t3C d, (3.16)

where F2 ∈ F2, F3 ∈ F3, (3.15) and (3.16) are canonical. Since (s2, s3) is lower consistent and t3C ∈ T3,
we have t2t3C ∈ T2∩T3. Applying HomK (t2t3C,−) to the E-triangle (3.14), we have an exact sequence

0 = HomK (t2t3C, F2)→ HomK (t2t3C,C)→ HomK (t2t3C, F3) = 0,

so HomK (t2t3C,C) = 0. Applying HomK (t2t3C,−) to the E-triangle (3.15), we have an exact sequence

E−1(t2t3C, f3C)→ HomK (t2t3C, t3C)→ HomK (t2t3C,C) = 0.

Since (T3,F3) is an s-torsion pair and t2t3C ∈ T3, f3C ∈ F3, we have E−1(t2t3C, f3C) = 0 and a ∈
HomK (t2t3C, t3C) = 0. By Lemma 3.3, b is a split monomorphism, then t3C is a direct summand of
f2t3C. It follows from Lemma 2.6 that t3C ∈ F2. Since (s1, s3) is upper consistent and C ∈ F1, we
have f3C ∈ F1. By Lemma 3.7, using the E-triangle (3.15), we obtain t3C ∈ F1. Thus t3C ∈ F1 ∩ F2

and f3C ∈ F1 ∩ F3, which implies that C ∈ (F1 ∩ F2) ∗ (F1 ∩ F3). Therefore, F1 ∩ (F2 ∗ F3) ⊂
(F1 ∩ F2) ∗ (F1 ∩ F3). Thus we complete the proof. □

Dually, we have the following conclusion.
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Corollary 3.9. Let si := (Ti,Fi) be an s-torsion pair in K for any i = 1, 2, 3. Suppose that (s1, s3),
(s2, s3) are lower consistent and (s1, s2) is upper consistent, then the following assertions hold.

(1) ((T1 ∗ T2,F1 ∩ F2), (T3,F3)) is lower consistent.
(2) ((T1 ∩ T3,F1 ∗ F3), (T2 ∩ T3,F2 ∗ F3)) is upper consistent.
(3) (T1 ∗ T2) ∩ T3 = (T1 ∩ T3) ∗ (T2 ∩ T3), and (F1 ∩ F2) ∗ F3 = (F1 ∗ F3) ∩ (F2 ∗ F3).

4. Application

In this section, we apply our main theorem to the τ-tilting theory which was introduced by Adachi,
Iyama and Reiten in [2]. Let Λ be a finite-dimensional algebra over an algebraically closed field
and modΛ the category of finitely generated left Λ-modules. If M is a Λ-module, we denote by
FacM the subcategory of modΛ which consists of all factor modules of finite direct sums of copies
of M; the subcategory SubM is defined dually. We denote the number of pairwise nonisomorphic
indecomposable summands of M by |M|, then |Λ| equals the rank of the Grothendieck group of modΛ.

Definition 4.1. ( [2]) Let M be a Λ-module.
(1) M is called τ-rigid if HomΛ(M, τM) = 0, where τ is the Auslander-Reiten translation.
(2) M is called τ-tilting if M is τ-rigid and |M| = |Λ|.

Let M be a τ-rigid Λ-module. It is well known that there exist two distinguished torsion pairs in
modΛ, namely

(FacM,M⊥) and (⊥(τM),SubτM),

which satisfy FacM ⊆ ⊥(τM) and SubτM ⊆ M⊥. We have the following characterization of an arbitrary
module being τ-tilting.

Lemma 4.2. Let M be a Λ-module, then M is τ-tilting if and only if (FacM,SubτM) is a torsion pair
in modΛ.

Proof. According to [2, Theorem 2.12], a τ-rigid module M is τ-tilting if and only if FacM = ⊥(τM).
If M is τ-tilting, then (FacM,SubτM) = (⊥(τM),SubτM) is a torsion pair. Conversely, assume

that (FacM,SubτM) is a torsion pair. Since M ∈ FacM, τM ∈ SubτM, we have HomΛ(M, τM) = 0,
which implies that M is τ-rigid. Notice that a torsion-free class and the corresponding torsion class are
determined by each other, and (FacM,SubτM), (⊥(τM),SubτM) are torsion pairs. We have FacM =
⊥(τM), so M is τ-tilting. □

Lemma 4.3. ( [3, Propositions 5.8, 5.6]) Let M and N be twoΛ-modules, then the following conditions
are equivalent.

(1) HomΛ(N, τM) = 0.
(2) Ext1

Λ(M,FacN) = 0.
(3) Ext1

Λ(SubτM, τN) = 0.

Proposition 4.4. Let M = M1 ⊕ M2 be a τ-rigid Λ-module, then the following assertions hold.
(1) FacM = FacM1 ∗ FacM2.
(2) SubτM = SubτM1 ∗ SubτM2.
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Proof. We only prove (1); the proof of (2) is similar. First, we prove that ((FacM1,M⊥1 ), (FacM2,M⊥2 ))
is lower consistent. Let X be a module in M⊥1 , then there exists an exact sequence

0→ P→ X → Q→ 0

with respect to the torsion pair (FacM2,M⊥2 ) such that P ∈ FacM2 and Q ∈ M⊥2 . Applying the functor
HomΛ(M1,−) to the exact sequence, we have an exact sequence

HomΛ(M1, X)→ HomΛ(M1,Q)→ Ext1
Λ(M1, P).

Since X ∈ M⊥1 , the left hand side vanishes. Since FacM2 ⊆ Fac(M1 ⊕ M2), we have that P also
belongs to Fac(M1 ⊕M2). Note that M1 ⊕M2 is a τ-rigid module, then it follows from Lemma 4.3 that
Ext1

Λ(M1 ⊕ M2, P) = 0, so Ext1
Λ(M1, P) = 0. Thus HomΛ(M1,Q) = 0, which implies that Q is in M⊥1 .

Hence ((FacM1,M⊥1 ), (FacM2,M⊥2 )) is upper consistent, then by Theorem 3.4, (FacM1 ∗ FacM2,M⊥1 ∩
M⊥2 ) is a torsion pair in modΛ. Moreover, since

M⊥ = (M1 ⊕ M2)⊥ = M⊥1 ∩ M⊥2 ,

the torsion pairs (FacM1 ∗ FacM2,M⊥1 ∩ M⊥2 ) and (FacM,M⊥) share the same torsion-free class, and
we have the assertion. □

Let X,Y be two subcategories of modΛ. Generally speaking, X ∗ Y , Y ∗ X. Proposition 4.4 tells
us that FacM1 ∗ FacM2 = FacM2 ∗ FacM1 and SubτM1 ∗ SubτM2 = SubτM2 ∗ SubτM1 when M1 ⊕ M2

is a τ-rigid Λ-module. By Proposition 4.4, we can easily get the following conclusion.

Corollary 4.5. Let M =
⊕n

i=1 Mi be a τ-rigid Λ-module, then the following assertions hold.
(1) FacM = FacM1 ∗ FacM2 ∗ · · · ∗ FacMn.
(2) SubτM = SubτM1 ∗ SubτM2 ∗ · · · ∗ SubτMn.

As a byproduct, we have the following characterization of direct sum of Λ-modules being τ-tilting.

Corollary 4.6. Let M =
⊕n

i=1 Mi be a Λ-module, then the following conditions are equivalent.
(1) M is τ-tilting.
(2) (FacM1 ∗ FacM2 ∗ · · · ∗ FacMn,SubτM1 ∗ SubτM2 ∗ · · · ∗ SubτMn) is a torsion pair in modΛ.

Proof. (1) implies (2). If M is a τ-tilting module, then (FacM,SubτM) is a torsion pair in modΛ by
Lemma 4.2, then the statement follows from Corollary 4.5.

(2) implies (1). Since (FacM1 ∗ FacM2 ∗ · · · ∗ FacMn,SubτM1 ∗ SubτM2 ∗ · · · ∗ SubτMn) is a torsion
pair, Mi ∈ FacM1 ∗ FacM2 ∗ · · · ∗ FacMn and τM j ∈ SubτM1 ∗ SubτM2 ∗ · · · ∗ SubτMn, and we have
HomΛ(Mi, τM j) = 0 for any 1 ≤ i, j ≤ n. This implies that M is τ-rigid. By Corollary 4.5, we have
that (FacM,SubτM) is a torsion pair in modΛ. Thus M is τ-tilting by Lemma 4.2. □

5. Conclusions

We introduced the notion of a consistent pair of s-torsion pairs in an extriangulated category with
a negative first extension. Let si := (Ti,Fi) be an s-torsion pair, for any i = 1, 2. We showed that
(T1 ∗ T2,F1 ∩ F2) (respectively, (T1 ∩ T2,F1 ∗ F2)) is an s-torsion pair if and only if (s1, s2) is an
upper (respectively, lower) consistent pair, which generalizes [4, Proposition 6]. Let M = M1 ⊕ M2 be
a τ-rigid module over a finite-dimensional algebra. As an application of the main theorem, we proved
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that FacM = FacM1 ∗ FacM2, where FacM is the category of all factor modules of finite direct sums of
copies of M.
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