In this paper we introduce a Garcia-Falset-type of noncyclical mappings and study the convergence of the iterates generated by a Thakur-type iteration scheme to the fixed proximal pairs of the new class of mappings.
Citation: Cristina Calineata, Teodor Turcanu. On fixed proximal pairs of $ E_r $-mappings[J]. AIMS Mathematics, 2023, 8(11): 26632-26649. doi: 10.3934/math.20231362
In this paper we introduce a Garcia-Falset-type of noncyclical mappings and study the convergence of the iterates generated by a Thakur-type iteration scheme to the fixed proximal pairs of the new class of mappings.
[1] | M. Abbas, S. Khan, M. Postolache, Existence and approximation results for SKC mappings in CAT(0) spaces, J. Inequal. Appl., 2014 (2014), 212. http://dx.doi.org/10.1186/1029-242X-2014-212 doi: 10.1186/1029-242X-2014-212 |
[2] | A. Anjum, C. Aage, Common fixed point theorem in F-metric spaces, J. Adv. Math. Stud., 15 (2022), 357–365. |
[3] | A. Anthony Eldred, V. Sankar Raj, On common best proximity pair theorems, Acta Sci. Math., 75 (2009), 707–721. |
[4] | A. Anthony Eldred, W. Kirk, P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Stud. Math., 171 (2005), 283–293. http://dx.doi.org/10.4064/sm171-3-5 doi: 10.4064/sm171-3-5 |
[5] | A. Bejenaru, C. Ciobanescu, Common fixed points of operators with property (E) in CAT(0) spaces, Mathematics, 10 (2022), 433. http://dx.doi.org/10.3390/math10030433 doi: 10.3390/math10030433 |
[6] | I. Berg, I. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata, 133 (2008), 195–218. http://dx.doi.org/10.1007/s10711-008-9243-3 doi: 10.1007/s10711-008-9243-3 |
[7] | M. Bridson, A. Haefliger, Metric spaces of nonpositive curvature, Berlin: Springer-Verlag, 1999. http://dx.doi.org/10.1007/978-3-662-12494-9 |
[8] | R. Caccioppoli, Un teorema generale sull' esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Naz. Lincei, 11 (1930), 794–799. |
[9] | B. Choudhury, N. Metiya, M. Postolache, P. Konar, A discussion on best proximity point and coupled best proximity point in partially ordered metric spaces, Fixed Point Theory Appl., 2015 (2015), 170. http://dx.doi.org/10.1186/s13663-015-0423-1 doi: 10.1186/s13663-015-0423-1 |
[10] | B. Choudhury, N. Metiya, M. Postolache, A generalized weak contraction principle with applications to coupled coincidence point problems, Fixed Point Theory Appl., 2013 (2013), 152. http://dx.doi.org/10.1186/1687-1812-2013-152 doi: 10.1186/1687-1812-2013-152 |
[11] | L. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. http://dx.doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2 |
[12] | H. Dehghan, J. Rooin, A characterization of metric projection in CAT(0) spaces, arXiv: 1311.4174VI. |
[13] | S. Dhompongsa, B. Panyanak, On $\Delta$-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572–2579. http://dx.doi.org/10.1016/j.camwa.2008.05.036 doi: 10.1016/j.camwa.2008.05.036 |
[14] | A. Fernández-León, A. Nicolae, Best proximity pair results for relatively nonexpansive mappings in geodesic spaces, Numer. Func. Anal. Opt., 35 (2014), 1399–1418. http://dx.doi.org/10.1080/01630563.2014.895762 doi: 10.1080/01630563.2014.895762 |
[15] | M. Gabeleh, O. Otafudu, Generalized pointwise noncyclic relatively nonexpansive mappings in strictly convex Banach spaces, J. Nonlinear Convex Anal., 17 (2016), 1117–1128. |
[16] | M. Gabeleh, S. Ezhil Manna, A. Eldred, O. Otafudu, Strong and weak convergence of Ishikawa iterations for best proximity pairs, Open Math., 18 (2020), 10–21. http://dx.doi.org/10.1515/math-2020-0002 doi: 10.1515/math-2020-0002 |
[17] | J. Garcia-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375 (2011), 185–195. http://dx.doi.org/10.1016/j.jmaa.2010.08.069 doi: 10.1016/j.jmaa.2010.08.069 |
[18] | T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal.-Theor. 65 (2006), 1379–1393. http://dx.doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017 |
[19] | T. Hicks, B. Rhoades, A Banach type fixed point theorem, Math. Japonica, 24 (1979), 327–330. |
[20] | G. Jacob, M. Postolache, M. Marudai, V. Raja, Norm convergence iterations for best proximity points of non-self non-expansive mappings, UPB Sci. Bull. Series A, 79 (2017), 49–56. |
[21] | W. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal.-Theor., 68 (2008), 3689–3696. http://dx.doi.org/10.1016/j.na.2007.04.011 doi: 10.1016/j.na.2007.04.011 |
[22] | A. Latif, R. Al Subaie, M. Alansari, Fixed points of generalized multi-valued contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123–138. http://dx.doi.org/10.23952/jnva.6.2022.1.07 doi: 10.23952/jnva.6.2022.1.07 |
[23] | W. Laowang, B. Panyanak, Approximating fixed point of nonexpansive nonself mappings in CAT(0) spaces, Fixed Point Theory Appl., 2010 (2010), 367274. http://dx.doi.org/10.1155/2010/367274 doi: 10.1155/2010/367274 |
[24] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. |
[25] | G. Saluja, Some common fixed point theorems on S-metric spaces using simulation function, J. Adv. Math. Stud., 15 (2022), 288–302. |
[26] | V. Sankar Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal.-Theor., 74 (2011), 4804–4808. http://dx.doi.org/10.1016/j.na.2011.04.052 doi: 10.1016/j.na.2011.04.052 |
[27] | W. Shatanawi, A. Pitea, Best proximity point and best proximity coupled point in a complete metric space with (P)-property, Filomat, 29 (2015), 63–74. http://dx.doi.org/10.2298/FIL1501063S doi: 10.2298/FIL1501063S |
[28] | T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861–1869. |
[29] | B. Thakur, D. Thakur, M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. http://dx.doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T |
[30] | Y. Yao, N. Shahzad, J. Yao, Convergence of Tseng-type self-adaptive algorithms for variational inequalities and fixed point problems, Carpathian J. Math., 37 (2021), 541–550. http://dx.doi.org/10.37193/CJM.2021.03.15 doi: 10.37193/CJM.2021.03.15 |