Utilizing two ideas of neutrosophic subsets (NS) and triangular norms, we introduce a new type of graph as valued-inverse Dombi neutrosophic graphs. The valued-inverse Dombi neutrosophic graphs are a generalization of inverse neutrosophic graphs and are dual to Dombi neutrosophic graphs. We present the concepts of (complete) strong valued-inverse Dombi neutrosophic graphs and analyze the complement of (complete) strong valued-inverse Dombi neutrosophic graphs and self-valued complemented valued-inverse Dombi neutrosophic graphs. Since the valued-inverse Dombi neutrosophic graphs depend on real values, solving the non-equation and the concept of homomorphism play a prominent role in determining the complete, strong, complementarity and self-complementarity of valued-inverse Dombi neutrosophic graphs. We introduce the truth membership order, indeterminacy membership order, falsity membership order, truth membership size, indeterminacy membership size and indeterminacy membership size of any given valued-inverse Dombi neutrosophic graph, which play a major role in the application of valued inverse Dombi neutrosophic graphs in complex networks. An application of a valued-inverse Dombi neutrosophic graph is also described in this study.
Citation: Mohammad Hamidi, Florentin Smarandache. Valued-inverse Dombi neutrosophic graph and application[J]. AIMS Mathematics, 2023, 8(11): 26614-26631. doi: 10.3934/math.20231361
Utilizing two ideas of neutrosophic subsets (NS) and triangular norms, we introduce a new type of graph as valued-inverse Dombi neutrosophic graphs. The valued-inverse Dombi neutrosophic graphs are a generalization of inverse neutrosophic graphs and are dual to Dombi neutrosophic graphs. We present the concepts of (complete) strong valued-inverse Dombi neutrosophic graphs and analyze the complement of (complete) strong valued-inverse Dombi neutrosophic graphs and self-valued complemented valued-inverse Dombi neutrosophic graphs. Since the valued-inverse Dombi neutrosophic graphs depend on real values, solving the non-equation and the concept of homomorphism play a prominent role in determining the complete, strong, complementarity and self-complementarity of valued-inverse Dombi neutrosophic graphs. We introduce the truth membership order, indeterminacy membership order, falsity membership order, truth membership size, indeterminacy membership size and indeterminacy membership size of any given valued-inverse Dombi neutrosophic graph, which play a major role in the application of valued inverse Dombi neutrosophic graphs in complex networks. An application of a valued-inverse Dombi neutrosophic graph is also described in this study.
[1] | M. Akram, S. Shahzadi, A. B. Saeid, Single valued neutrosophic Hypergraphs, TWMS J. Appl. Eng. Math., 8 (2018), 122–135. |
[2] | M. Akram, Single-Valued Neutrosophic Graphs, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-13-3522-8 |
[3] | M. Akram, H. Saba Nawaz, Implementation of single-valued neutrosophic soft hypergraphs on human nervous system, Artif. Intell. Rev., 56 (2022), 1387–1425. |
[4] | M. Akram, H. Saba Nawaz, Algorithms for the computation of regular single-valued neutrosophic soft hypergraphs applied to supranational asian bodies, J. Appl. Math. Comput., 68 (2022), 4479–4506. |
[5] | D. Ajay, P. Chellamani, G. Rajchakit, N. Boonsatit, P. Hammachukiattikul, Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM, AIMS Mathematics, 7 (2022), 9424–9442. https://doi.org/10.3934/math.2022523 doi: 10.3934/math.2022523 |
[6] | M. Akram, M. H Sarwar, W. A. Dudek, Bipolar Neutrosophic Graph Structures, In: Graphs for the Analysis of Bipolar Fuzzy Information, Singapore: Springer, 2020,393–446. https://doi.org/10.1007/978-981-15-8756-6_10 |
[7] | S. Ashraf, S. Naz, E. E. Kerre, Dombi Fuzzy Graphs, Fuzzy Inf. Eng., 10 (2018), 58–79. https://doi.org/10.1080/16168658.2018.1509520 |
[8] | R. A. Borzooei, R. Almallah, Y. B. Jun, H. Ghaznavi, Inverse Fuzzy Graphs with Applications, New Math. Nat. Comput., 16 (2020), 397–418. https://doi.org/10.1142/S1793005720500246 |
[9] | G. Ghorai, M. Pal, Certain types of product bipolar fuzzy graphs, Int. J. Appl. Comput. Math., 3 (2017), 605–619. |
[10] | S. Jahanpanah, M. Hamidi, Valued-Inverse Dombi Fuzzy Graph, 2023, Submitted. |
[11] | M. Hamidi, S. Jahanpanah, A. Radfar, Extended graphs based on KM-fuzzy metric spaces, Iran. J. Fuzzy Syst., 17 (2020), 81–95. |
[12] | M. Hamidi, S. Jahanpanah, A. Radfar, On KM-Fuzzy Metric Hypergraphs, Fuzzy Inf. Eng., 12 (2020), 300–321. https://doi.org/10.1080/16168658.2020.1867419 |
[13] | A. Kaufmann, Introduction to the theory of fuzzy subsets, New York: Academic Press, 1975. |
[14] | T. S. Lakhwani, K. Mohanta, A. Dey, S. P. Mondal, A. Pal, Some operations on Dombi neutrosophic graph, J. Ambient Intell. Human. Comput., 13 (2022), 425–443. https://doi.org/10.1007/s12652-021-02909-3 |
[15] | K. Mohanta, A. Dey, A. Pal, A note on different types of product of neutrosophic graphs, Complex. Intell. Syst., 7 (2021), 857–871. https://doi.org/10.1007/s40747-020-00238-0 |
[16] | R. Mahapatra, S. Samanta, M. Pal, Generalized neutrosophic planar graphs and its application, J. Appl. Math. Comput., 65 (2021), 693–712. https://doi.org/10.1007/s12190-020-01411-x |
[17] | H. T. Nguyen, C. L. Walker, E. A. Walker, A First Course in Fuzzy Logic, 4 Eds., Boca Raton: CRC Press, 2018. |
[18] | A. Rosenfeld, Fuzzy graphs, In: Fuzzy sets and their applications to cognitive and decision processes, New York: Academic Press, 1975, 77–95. https://doi.org/10.1016/B978-0-12-775260-0.50008-6 |
[19] | S. Siddique, U. Ahmad, M. Akram, A study on generalized graphs representations of complex neutrosophic information, J. Appl. Math. Comput., 65 (2021), 481–514. https://doi.org/10.1007/s12190-020-01400-0 |
[20] | S. Sahin, A. Kargın, M. Yucel, Hausdorff Measures on Generalized Set Valued Neutrosophic Quadruple Numbers and Decision Making Applications for Adequacy of Online Education, Neutrosophic Sets Syst., 40 (2021), 86–116. |
[21] | F. Smarandache, Neutrosophic set a generalization of the intuitionistic fuzzy set, Int. J. Pure. Appl. Math., 24 (2005), 287–297. |
[22] | S. Zeng, M. Shoaib, S. Ali, F. Smarandache, H. Rashmanlou, F. Mofidnakhaei, Certain Properties of Single-Valued Neutrosophic Graph With Application in Food and Agriculture Organization, Int. J. Comput. Intell., 14 (2021), 1516–1540. https://doi.org/10.2991/ijcis.d.210413.001 doi: 10.2991/ijcis.d.210413.001 |
[23] | J. Zhan, M. Akram, M. Sitara, Novel decision-making method based on bipolar neutrosophic information, Soft Comput., 23 (2019), 9955–9977. |