Research article

Silting objects and recollements of extriangulated categories

  • Received: 03 April 2024 Revised: 15 August 2024 Accepted: 19 August 2024 Published: 23 August 2024
  • MSC : 16G10, 18E40, 18G80

  • In this paper, let $ (\mathscr{A}, \mathscr{C}, \mathscr{B}) $ be a recollement of extriangulated categories. We construct a silting object and a tilting object from the two end terms of a recollement. We also show that the reverse direction holds under natural assumptions. Moreover, we show that our gluing preserves cotorsion pairs.

    Citation: Zhen Zhang, Shance Wang. Silting objects and recollements of extriangulated categories[J]. AIMS Mathematics, 2024, 9(9): 24796-24809. doi: 10.3934/math.20241207

    Related Papers:

  • In this paper, let $ (\mathscr{A}, \mathscr{C}, \mathscr{B}) $ be a recollement of extriangulated categories. We construct a silting object and a tilting object from the two end terms of a recollement. We also show that the reverse direction holds under natural assumptions. Moreover, we show that our gluing preserves cotorsion pairs.



    加载中


    [1] A. A. Be$\check{\rm{i}}$linson, J. Bernstein, P. Deligne, F. Pervers, Analysis and topology on singular spaces, Astérisque, 1982.
    [2] L. A. Hügel, S. Koenig, Q. Liu, On the uniqueness of stratifications of derived module categories, J. Algebra, 359 (2012), 120–137. https://doi.org/10.1016/j.jalgebra.2012.02.022 doi: 10.1016/j.jalgebra.2012.02.022
    [3] C. Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra, 398 (2014), 63–110. https://doi.org/10.1016/j.jalgebra.2013.09.020 doi: 10.1016/j.jalgebra.2013.09.020
    [4] V. Franjou, T. Pirashvili, Comparison of abelian categories recollements, Doc. Math., 9 (2004), 41–56. https://doi.org/10.4171/dm/156 doi: 10.4171/dm/156
    [5] J. Chen, Cotorsion pairs in a recollement of triangulated categories, Commun. Algebra, 41 (2013), 2903–2915. https://doi.org/10.1080/00927872.2012.666598 doi: 10.1080/00927872.2012.666598
    [6] X. Ma, Z. Huang, Torsion pairs in recollements of abelian categories, Front. Math. China, 13 (2018), 875–892. https://doi.org/10.1007/s11464-018-0712-1 doi: 10.1007/s11464-018-0712-1
    [7] X. Ma, T. Zhao, Z. Huang, Gorenstein algebras and recollements, Commun. Algebra, 47 (2019), 3527–3538. https://doi.org/10.1080/00927872.2019.1567747 doi: 10.1080/00927872.2019.1567747
    [8] Y. Zheng, Balanced pairs induce recollements, Commun. Algebra, 45 (2017), 4238–4245. https://doi.org/10.1080/00927872.2016.1262384 doi: 10.1080/00927872.2016.1262384
    [9] Q. Liu, J. Vitória, D. Yang, Gluing silting objects, Nagoya Math. J., 216 (2014), 117–151. https://doi.org/10.1215/00277630-2847151 doi: 10.1215/00277630-2847151
    [10] H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Geom. Differ. Categ., 60 (2019), 117–193.
    [11] B. Zhu, X. Zhuang, Tilting subcategories in extriangulated categories, Front. Math. China, 15 (2020), 225–253. https://doi.org/10.1007/s11464-020-0811-7 doi: 10.1007/s11464-020-0811-7
    [12] L. Wang, J. Wei, H. Zhang, Recollements of extriangulated categories, Colloq. Math., 167 (2022), 239–259. https://doi.org/10.4064/cm8457-2-2021 doi: 10.4064/cm8457-2-2021
    [13] F. Bonometti, Gluing silting objects along recollements of well generated triangulated categories, arXiv, 2020. https://doi.org/10.48550/arXiv.2001.02207
    [14] L. A. Hügel, S. Koenig, Q. Liu, Recollements and tilting objects, J. Pure Appl. Algebra, 215 (2011), 420–438. https://doi.org/10.1016/j.jpaa.2010.04.027 doi: 10.1016/j.jpaa.2010.04.027
    [15] X. Ma, T. Zhao, Recollements and tilting modules, Commun. Algebra, 48 (2020), 5163–5175. https://doi.org/10.1080/00927872.2020.1781874 doi: 10.1080/00927872.2020.1781874
    [16] Y. Liu, H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra, 528 (2019), 96–149. https://doi.org/10.1016/j.jalgebra.2019.03.005 doi: 10.1016/j.jalgebra.2019.03.005
    [17] T. Adachi, M. Tsukamoto, Hereditary cotorsion pairs and silting subcategories in extriangulated categories, J. Algebra, 594 (2022), 109–137. https://doi.org/10.1016/j.jalgebra.2021.11.029 doi: 10.1016/j.jalgebra.2021.11.029
    [18] X. Ma, Z. Xie, T. Zhao, Support $\tau$-tilting modules and recollement, Colloq. Math., 167 (2022), 303–328. https://doi.org/10.4064/CM8358-11-2020 doi: 10.4064/CM8358-11-2020
    [19] Y. Liu, P. Zhou, Y. Zhou, B. Zhu, Silting reduction in extriangulated categories, arXiv, 2021. https://doi.org/10.48550/arXiv.2108.07964
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(444) PDF downloads(49) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog