Research article Special Issues

Modified artificial rabbits optimization combined with bottlenose dolphin optimizer in feature selection of network intrusion detection

  • Received: 31 December 2023 Revised: 19 February 2024 Accepted: 20 February 2024 Published: 29 February 2024
  • For the feature selection of network intrusion detection, the issue of numerous redundant features arises, posing challenges in enhancing detection accuracy and adversely affecting overall performance to some extent. Artificial rabbits optimization (ARO) is capable of reducing redundant features and can be applied for the feature selection of network intrusion detection. The ARO exhibits a slow iteration speed in the exploration phase of the population and is prone to an iterative stagnation condition in the exploitation phase, which hinders its ability to deliver outstanding performance in the aforementioned problems. First, to enhance the global exploration capabilities further, the thinking of ARO incorporates the mud ring feeding strategy from the bottlenose dolphin optimizer (BDO). Simultaneously, for adjusting the exploration and exploitation phases, the ARO employs an adaptive switching mechanism. Second, to avoid the original algorithm getting trapped in the local optimum during the local exploitation phase, the levy flight strategy is adopted. Lastly, the dynamic lens-imaging strategy is introduced to enhance population variety and facilitate escape from the local optimum. Then, this paper proposes a modified ARO, namely LBARO, a hybrid algorithm that combines BDO and ARO, for feature selection in the network intrusion detection model. The LBARO is first empirically evaluated to comprehensively demonstrate the superiority of the proposed algorithm, using 8 benchmark test functions and 4 UCI datasets. Subsequently, the LBARO is integrated into the feature selection process of the network intrusion detection model for classification experimental validation. This integration is validated utilizing the NSL-KDD, UNSW NB-15, and InSDN datasets, respectively. Experimental results indicate that the proposed model based on LBARO successfully reduces redundant characteristics while enhancing the classification capabilities of network intrusion detection.

    Citation: Fukui Li, Hui Xu, Feng Qiu. Modified artificial rabbits optimization combined with bottlenose dolphin optimizer in feature selection of network intrusion detection[J]. Electronic Research Archive, 2024, 32(3): 1770-1800. doi: 10.3934/era.2024081

    Related Papers:

  • For the feature selection of network intrusion detection, the issue of numerous redundant features arises, posing challenges in enhancing detection accuracy and adversely affecting overall performance to some extent. Artificial rabbits optimization (ARO) is capable of reducing redundant features and can be applied for the feature selection of network intrusion detection. The ARO exhibits a slow iteration speed in the exploration phase of the population and is prone to an iterative stagnation condition in the exploitation phase, which hinders its ability to deliver outstanding performance in the aforementioned problems. First, to enhance the global exploration capabilities further, the thinking of ARO incorporates the mud ring feeding strategy from the bottlenose dolphin optimizer (BDO). Simultaneously, for adjusting the exploration and exploitation phases, the ARO employs an adaptive switching mechanism. Second, to avoid the original algorithm getting trapped in the local optimum during the local exploitation phase, the levy flight strategy is adopted. Lastly, the dynamic lens-imaging strategy is introduced to enhance population variety and facilitate escape from the local optimum. Then, this paper proposes a modified ARO, namely LBARO, a hybrid algorithm that combines BDO and ARO, for feature selection in the network intrusion detection model. The LBARO is first empirically evaluated to comprehensively demonstrate the superiority of the proposed algorithm, using 8 benchmark test functions and 4 UCI datasets. Subsequently, the LBARO is integrated into the feature selection process of the network intrusion detection model for classification experimental validation. This integration is validated utilizing the NSL-KDD, UNSW NB-15, and InSDN datasets, respectively. Experimental results indicate that the proposed model based on LBARO successfully reduces redundant characteristics while enhancing the classification capabilities of network intrusion detection.



    加载中


    [1] M. H. Nasir, S. A. Khan, M. M. Khan, M. Fatima, Swarm intelligence inspired intrusion detection systems—a systematic literature review, Comput. Networks, 205 (2022), 1389–1286. https://doi.org/10.1016/j.comnet.2021.108708 doi: 10.1016/j.comnet.2021.108708
    [2] T. Dokeroglu, A. Deniz, H. E. Kiziloz, A comprehensive survey on recent metaheuristics for feature selection, Neurocomputing, 494 (2022), 269–296. https://doi.org/10.1016/j.neucom.2022.04.083 doi: 10.1016/j.neucom.2022.04.083
    [3] M. Rostami, K. Berahmand, E. Nasiri, S. Forouzandeh, Review of swarm intelligence-based feature selection methods, Eng. Appl. Artif. Intell., 100 (2021), 104210. https://doi.org/10.1016/j.engappai.2021.104210 doi: 10.1016/j.engappai.2021.104210
    [4] O. O. Akinola, A. E. Ezugwu, J. O. Agushaka, R. A. Zitar, L. Abualigah, Multiclass feature selection with metaheuristic optimization algorithms: a review, Neural Comput. Appl., 34 (2022), 19751–19790. https://doi.org/10.1007/s00521-022-07705-4 doi: 10.1007/s00521-022-07705-4
    [5] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [6] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
    [7] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [8] J. Nasiri, F. M. Khiyabani, A whale optimization algorithm (WOA) approach for clustering, Cogent Math. Stat., 5 (2018), 1483565. https://doi.org/10.1080/25742558.2018.1483565 doi: 10.1080/25742558.2018.1483565
    [9] Z. Sadeghian, E. Akbari, H. Nematzadeh, H. Motameni, A review of feature selection methods based on meta-heuristic algorithms, J. Exp. Theor. Artif. Intell., 35 (2023), 1–51. https://doi.org/10.1080/0952813X.2023.2183267 doi: 10.1080/0952813X.2023.2183267
    [10] L. Wang, Q. Cao, Z. Zhang, S. Mirjalili, W. Zhao, Artificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 114 (2022), 105082. https://doi.org/10.1016/j.engappai.2022.105082 doi: 10.1016/j.engappai.2022.105082
    [11] A. Srivastava, D. K. Das, A bottlenose dolphin optimizer: an application to solve dynamic emission economic dispatch problem in the microgrid, Knowledge-Based Syst., 243 (2022), 108455. https://doi.org/10.1016/j.knosys.2022.108455 doi: 10.1016/j.knosys.2022.108455
    [12] R. Ramalingam, B. Saleena, S. Basheer, P. Balasubramanian, M. Rashid, G. Jayaraman, EECHS-ARO: energy-efficient cluster head selection mechanism for livestock industry using artificial rabbits optimization and wireless sensor networks, Electron. Res. Arch., 31 (2023), 3123–3144. https://doi.org/10.3934/era.2023158 doi: 10.3934/era.2023158
    [13] Y. Wang, Y. Xiao, Y. Guo, J. Li, Dynamic chaotic opposition-based learning-driven hybrid Aquila Optimizer and artificial rabbits optimization algorithm: framework and applications, Processes, 10 (2022), 2703. https://doi.org/10.3390/pr10122703 doi: 10.3390/pr10122703
    [14] D. Dangi, S. T. Chandel, D. K. Dixit, S. Sharma, A. Bhagat, An efficient model for sentiment analysis using artificial rabbits optimized vector functional link network, Expert Syst. Appl., 225 (2023), 119849. https://doi.org/10.1016/j.eswa.2023.119849 doi: 10.1016/j.eswa.2023.119849
    [15] S. Kumar, S. Gupta, S. Arora, Research trends in network-based intrusion detection systems: a review, IEEE Access, 9 (2021), 157761–157779. https://doi.org/10.1109/ACCESS.2021.3129775 doi: 10.1109/ACCESS.2021.3129775
    [16] H. Alazzam, A. Sharieh, K. E. Sabri, A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer, Expert Syst. Appl., 148 (2020), 113249. https://doi.org/10.1016/j.eswa.2020.113249 doi: 10.1016/j.eswa.2020.113249
    [17] Q. M. Alzubi, M. Anbar, Y. Sanjalawe, M. A. Al-Betar, R. Abdullah, Intrusion detection system based on hybridizing a modified binary grey wolf optimization and particle swarm optimization, Expert Syst. Appl., 204 (2022), 117597. https://doi.org/10.1016/j.eswa.2022.117597 doi: 10.1016/j.eswa.2022.117597
    [18] A. Alzaqebah, I. Aljarah, O. Al-Kadi, R. Damaševičius, A modified grey wolf optimization algorithm for an intrusion detection system, Mathematics, 10 (2022), 999. https://doi.org/10.3390/math10060999 doi: 10.3390/math10060999
    [19] M. Injadat, A. Moubayed, A. B. Nassif, A. Shami, Multi-stage optimized machine learning framework for network intrusion detection, IEEE Trans. Netw. Serv. Manage., 18 (2020), 1803–1816. https://doi.org/10.1109/TNSM.2020.3014929 doi: 10.1109/TNSM.2020.3014929
    [20] J. Lee, J. Pak, M. Lee, Network intrusion detection system using feature extraction based on deep sparse autoencoder, in 2020 International Conference on Information and Communication Technology Convergence (ICTC), (2020), 1282–1287. https://doi.org/10.1109/ICTC49870.2020.9289253
    [21] M. D. Mauro, G. Galatro, G. Fortino, A. Liotta, Supervised feature selection techniques in network intrusion detection: a critical review, Eng. Appl. Artif. Intell., 101 (2021), 104216. https://doi.org/10.1016/j.engappai.2021.104216 doi: 10.1016/j.engappai.2021.104216
    [22] Y. Li, W. Xu, W. Li, A. Li, Z. Liu, Research on hybrid intrusion detection method based on the ADASYN and ID3 algorithms, Math. Biosci. Eng., 19 (2021), 2030–2042. https://doi.org/10.3934/mbe.2022095 doi: 10.3934/mbe.2022095
    [23] T. Wang, H. Zhou, H. Liu, Multi-label feature selection based on HSIC and sparrow search algorithm, Math. Biosci. Eng, 20 (2023), 14201–14221. https://doi.org/10.3934/mbe.2023635 doi: 10.3934/mbe.2023635
    [24] A. Dahou, M. A. Elaziz, S. A. Chelloug, M. A. Awadallah, M. A. Al-Betar, M. A. Al-qaness, et al., Intrusion detection system for ioT based on deep learning and modified reptile search algorithm, Comput. Intell. Neurosci., 2022 (2022), 6473507. https://doi.org/10.1155/2022/6473507 doi: 10.1155/2022/6473507
    [25] M. Imran, S. Khan, H. Hlavacs, F. A. Khan, S. Anwar, Intrusion detection in networks using cuckoo search optimization, Soft Comput., 26 (2022), 10651–10663. https://doi.org/10.1007/s00500-022-06798-2 doi: 10.1007/s00500-022-06798-2
    [26] H. Xu, Y. Lu, Q. Guo, Application of improved butterfly optimization algorithm combined with black widow optimization in feature selection of network intrusion detection, Electronics, 11 (2022), 3531. https://doi.org/10.3390/electronics11213531 doi: 10.3390/electronics11213531
    [27] H. Xu, Y. Hu, W. Cao, L. Han, An improved jump spider optimization for network traffic identification feature selection, CMC-Comput. Mater. Continua, 76 (2023), 3239–3255. https://doi.org/10.32604/cmc.2023.039227 doi: 10.32604/cmc.2023.039227
    [28] H. Xu, K. Przystupa, C. Fang, A. Marciniak, O. Kochan, M. Beshley, A combination strategy of feature selection based on an integrated optimization algorithm and weighted k-nearest neighbor to improve the performance of network intrusion detection, Electronics, 9 (2020), 1206. https://doi.org/10.3390/electronics9081206 doi: 10.3390/electronics9081206
    [29] F. Qiu, H. Xu, F. Li, Applying modified golden jackal optimization to intrusion detection for Software-Defined Networking, Electron. Res. Arch., 32 (2024), 418–444. https://doi.org/10.3934/era.2024021 doi: 10.3934/era.2024021
    [30] A. Berta, Whales, Dolphins, and Porpoises: A Natural History and Species Guide, University of Chicago Press, 2020. https://doi.org/10.7208/9780226183220
    [31] L. Sun, M. M. Li, J. C. Xu, Binary harris hawk optimization and its feature selection algorithm, Comput. Sci., 50 (2023), 277–291. https://doi.org/10.11896/jsjkx.220300269 doi: 10.11896/jsjkx.220300269
    [32] M. Chawla, M. Duhan, Levy flights in metaheuristics optimization algorithms–a review, Appl. Artif. Intell., 32 (2018), 802–821. https://doi.org/10.1080/08839514.2018.1508807 doi: 10.1080/08839514.2018.1508807
    [33] J. Li, Q. An, H. Lei, Q. Deng, G. G. Wang, Survey of lévy flight-based metaheuristics for optimization, Mathematics, 10 (2022), 2785. https://doi.org/10.3390/math10152785 doi: 10.3390/math10152785
    [34] P. Yuan, T. Zhang, L. Yao, Y. Lu, W. Zhuang, A hybrid golden jackal optimization and golden sine algorithm with dynamic lens-imaging learning for global optimization problems, Appl. Sci., 12 (2022), 9709. https://doi.org/10.3390/app12199709 doi: 10.3390/app12199709
    [35] W. Long, J. Jiao, M. Xu, M. Tang, T. Wu, S. Cai, Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection, Expert Syst. Appl., 202 (2022), 117255. https://doi.org/10.1016/j.eswa.2022.117255 doi: 10.1016/j.eswa.2022.117255
    [36] I. M. El-Hasnony, S. I. Barakat, M. Elhoseny, R. R. Mostafa, Improved feature selection model for big data analytics, IEEE Access, 8 (2020), 66989–67004. https://doi.org/10.1109/ACCESS.2020.2986232 doi: 10.1109/ACCESS.2020.2986232
    [37] B. Venkatesh, J. Anuradha, A review of feature selection and its methods, Cybern. Inf. Technol., 19 (2019), 3–26. https://doi.org/10.2478/cait-2019-0001 doi: 10.2478/cait-2019-0001
    [38] O. Almomani, A feature selection model for network intrusion detection system based on PSO, GWO, FFA and GA algorithms, Symmetry, 12 (2020), 1046. https://doi.org/10.3390/sym12061046 doi: 10.3390/sym12061046
    [39] T. Le, Y. Kim, H. Kim, Network intrusion detection based on novel feature selection model and various recurrent neural networks, Appl. Sci., 9 (2019), 1392. https://doi.org/10.3390/app9071392 doi: 10.3390/app9071392
    [40] K. Hussain, M. N. M. Salleh, S. Cheng, R. Naseem, Common benchmark functions for metaheuristic evaluation: a review, Int. J. Inf. Vis., 1 (2017), 218–223. http://dx.doi.org/10.30630/joiv.1.4-2.65 doi: 10.30630/joiv.1.4-2.65
    [41] N. M. Yusof, A. K. Muda, S. F. Pratama, A. Abraham, A novel nonlinear time-varying sigmoid transfer function in binary whale optimization algorithm for descriptors selection in drug classification, Mol. Diversity, 27 (2023), 71–80. https://doi.org/10.1007/s11030-022-10410-y doi: 10.1007/s11030-022-10410-y
    [42] K. Zhang, Y. Liu, F. Mei, G. Sun, J. Jin, IBGJO: improved binary golden jackal optimization with chaotic tent map and cosine similarity for feature selection, Entropy, 25 (2023), 1128. https://doi.org/10.3390/e25081128 doi: 10.3390/e25081128
    [43] R. D. Ravipati, M. Abualkibash, Intrusion detection system classification using different machine learning algorithms on KDD-99 and NSL-KDD datasets-a review paper, Int. J. Comput. Sci. Inf. Technol., 11 (2019), 65–80. https://doi.org/10.2139/ssrn.3428211 doi: 10.2139/ssrn.3428211
    [44] M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, in 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, (2009), 1–6. https://doi.org/10.1109/CISDA.2009.5356528
    [45] T. Su, H. Sun, J. Zhu, S. Wang, Y. Li, BAT: deep learning methods on network intrusion detection using NSL-KDD dataset, IEEE Access, 8 (2020), 29575–29585. https://doi.org/10.1109/Access.6287639 doi: 10.1109/Access.6287639
    [46] M. K. Ngueajio, G. Washington, D. B. Rawat, Y. Ngueabou, Intrusion detection systems using support vector machines on the kddcup'99 and nsl-kdd datasets: a comprehensive survey, in Intelligent Systems and Applications, 543 (2022), 609–629. https://doi.org/10.1007/978-3-031-16078-3_42
    [47] N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set), in 2015 Military Communications and Information Systems Conference (MilCIS), (2015), 1–6. https://doi.org/10.1109/MilCIS.2015.7348942
    [48] N. Moustafa, J. Slay, The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set, Inf. Secur. J.: Global Perspect., 25 (2016), 18–31. https://doi.org/10.1080/19393555.2015.1125974 doi: 10.1080/19393555.2015.1125974
    [49] M. S. Elsayed, N. A. Le-Khac, A. D. Jurcut, InSDN: a novel SDN intrusion dataset, IEEE Access, 8 (2020), 165263–165284. https://doi.org/10.1109/ACCESS.2020.3022633 doi: 10.1109/ACCESS.2020.3022633
    [50] M. Abdallah, N. A. L. Khac, H. Jahromi, A. D. Jurcut, A hybrid CNN-LSTM based approach for anomaly detection systems in SDNs, in ARES'21: Proceedings of the 16th International Conference on Availability, Reliability and Security, (2021), 1–7. https://doi.org/10.1145/3465481.3469190
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(783) PDF downloads(53) Cited by(3)

Article outline

Figures and Tables

Figures(13)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog