In this paper, we study the global stability and persistence of a microorganism flocculation model with infinite delay. First, we make a complete theoretical analysis on the local stability of the boundary equilibrium (microorganism-free equilibrium) and the positive equilibrium (microorganism co-existent equilibrium), and give a sufficient condition for the global stability of the boundary equilibrium (applicable to the forward bifurcation and the backward bifurcation). Then, for the persistence of the model, we present an explicit estimate of the eventual lower bound of any positive solution for which only the parameter threshold $ R_0 > 1 $ is required. The obtained results extend some of the conclusions of the existing literatures on the case of discrete time delay.
Citation: Jiaxin Nan, Wanbiao Ma. Stability and persistence analysis of a microorganism flocculation model with infinite delay[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10815-10827. doi: 10.3934/mbe.2023480
In this paper, we study the global stability and persistence of a microorganism flocculation model with infinite delay. First, we make a complete theoretical analysis on the local stability of the boundary equilibrium (microorganism-free equilibrium) and the positive equilibrium (microorganism co-existent equilibrium), and give a sufficient condition for the global stability of the boundary equilibrium (applicable to the forward bifurcation and the backward bifurcation). Then, for the persistence of the model, we present an explicit estimate of the eventual lower bound of any positive solution for which only the parameter threshold $ R_0 > 1 $ is required. The obtained results extend some of the conclusions of the existing literatures on the case of discrete time delay.
[1] | H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511530043 |
[2] | X. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edition, Springer-Verlag, New York, 2017. https://doi.org/10.1007/978-3-319-56433-3 |
[3] | L. Chen, J. Chen, Nonlinear Biological Dynamical Systems (in Chinese), Science Press, Beijing, 1993. |
[4] | S. Ruan, The dynamics of chemostat models (in Chinese), J. Cent. China Norm. Univ., 31 (1997), 377–397. |
[5] | X. Tai, W. Ma, S. Guo, H. Yan, C. Yin, A class of dynamic delayed model describing flocculation of micoorganism and its theoretical analysis (in Chinese), Math. Pract. Theory, 45 (2015), 198–209. Available from: https://www.researchgate.net/publication/331590204. |
[6] | S. Guo, W. Ma, Global dynamics of a microorganism flocculation model with time delay, Commun. Pur. Appl. Anal., 16 (2017), 1883–1891. https://doi.org/10.3934/cpaa.2017091 doi: 10.3934/cpaa.2017091 |
[7] | S. Guo, W. Ma, X. Zhao, Global dynamics of a time-delayed microorganism flocculation model with saturated functional responses, J. Dyn. Differ. Equations, 30 (2018), 1247–1271. https://doi.org/10.1007/s10884-017-9605-3 doi: 10.1007/s10884-017-9605-3 |
[8] | S. Guo, J. Cui, W. Ma, An analysis approach to permanence of a delay differential equations model of microorganism flocculation, Discrete Contin. Dyn. Syst. -B, 27 (2022), 3831–3844. https://doi.org/10.3934/dcdsb.2021208 doi: 10.3934/dcdsb.2021208 |
[9] | X. Mu, D. Jiang, A. Alsaedi, Dynamical behavior of a stochastic microorganism flocculation model with nonlinear perturbation, Qual. Theor. Dyn. Syst., 21 (2022), 1–19. https://doi.org/10.1007/s12346-022-00566-1 doi: 10.1007/s12346-022-00566-1 |
[10] | E. Beretta, G. I. Bischi, F. Solimano, Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol., 28 (1990), 99–111. https://doi.org/10.1007/BF00171521 doi: 10.1007/BF00171521 |
[11] | E. Beretta, Y. Takeuchi, Qualitative properties of chemostat equations with time delays: boundedness, local and global asymptotic stability, Differ. Equations Dyn. Syst., 2 (1994), 19–40. Available from: https://www.researchgate.net/publication/256114891. |
[12] | E. Beretta, Y. Takeuchi, Qualitative properties of chemostat equations with time delays Ⅱ, Differ. Equations Dyn. Syst., 2 (1994), 263–288. Available from: https://www.researchgate.net/publication/255989412. |
[13] | S. Ruan, The effect of delays on stability and persistence in Plankton models, Nonlinear Anal. Theory Methods Appl., 24 (1995), 575–585. https://doi.org/10.1016/0362-546X(95)93092-I doi: 10.1016/0362-546X(95)93092-I |
[14] | X. He, S. Ruan, H. Xia, Global stability in chemostat-type equations with distributed delays, SIAM J. Math. Anal., 29 (1998), 681–696. https://doi.org/10.1137/S0036141096311101 doi: 10.1137/S0036141096311101 |
[15] | X. He, S. Ruan, Global stability in chemostat-type plankton models with delayed nutrient recycling, J. Math. Biol., 37 (1998), 253–271. https://doi.org/10.1007/s002850050128 doi: 10.1007/s002850050128 |
[16] | S. Ruan, G. S. K. Wolkowicz, Bifurcation analysis of a chemostat model with a distributed delay, J. Math. Anal. Appl., 204 (1996), 786–812. https://doi.org/10.1006/jmaa.1996.0468 doi: 10.1006/jmaa.1996.0468 |
[17] | G. S. K. Wolkowicz, H. Xia, S. Ruan, Competition in the chemostat: a distributed delay model and its global asymptotic behavior, SIAM J. Appl. Math., 57 (1997), 1281–1310. https://doi.org/10.1137/S0036139995289842 doi: 10.1137/S0036139995289842 |
[18] | G. S. K. Wolkowicz, H. Xia, J. Wu, Global dynamics of a chemostat competition model with distributed delay, J. Math. Biol., 38 (1999), 285–316. https://doi.org/10.1007/s002850050150 doi: 10.1007/s002850050150 |
[19] | B. Li, G. S. K. Wolkowicz, Y. Kuang, Global asymptotic behavior of a chemostat model with two perfecity complementary resources and distributed delay, SIAM J. Appl. Math., 60 (2000), 2058–2086. https://doi.org/10.1137/S0036139999359756 doi: 10.1137/S0036139999359756 |
[20] | J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Springer-Verlag, Berlin, 1977. https://doi.org/10.1007/978-3-642-93073-7 |
[21] | N. MacDonald, Time Lags in Biological Models, Springer-Verlag, Berlin, 1978. https://doi.org/10.1007/978-3-642-93107-9 |
[22] | K. Gopalsamy, Stability and Oscillation in Delay Equation of Population Dynamics, Kluwer Academic Publishers, Dordrecht, 1992. https://doi.org/10.1007/978-94-015-7920-9 |
[23] | Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. Available from: https://www.researchgate.net/publication/243764052. |
[24] | L. Chen, Mathematical Ecological Models and Research Methods (in Chinese), 2$^nd$ edition, Science Press, Beijing, 2017. |
[25] | G. Röst, J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5 (2008), 389–402. https://doi.org/10.3934/mbe.2008.5.389 doi: 10.3934/mbe.2008.5.389 |
[26] | C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603–610. https://doi.org/10.3934/mbe.2009.6.603 doi: 10.3934/mbe.2009.6.603 |
[27] | P. Nelson, A. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73–94. https://doi.org/10.1016/S0025-5564(02)00099-8 doi: 10.1016/S0025-5564(02)00099-8 |
[28] | X. Lai, X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmision, SIAM J. Appl. Math., 74 (2014), 898–917. https://doi.org/10.1137/130930145 doi: 10.1137/130930145 |
[29] | H. Shu, Y. Chen, L. Wang, Impacts of the cell-free and cell-to-cell infection modes on viral dynamics, J. Dyn. Diff. Equations, 30 (2018), 1817–1836. https://doi.org/10.1007/s10884-017-9622-2 doi: 10.1007/s10884-017-9622-2 |
[30] | K. Wang, M. Fan, Phase Space Theory of Functional Differential Equations and its Applications (in Chinese), Science Press, Beijing, 2009. |
[31] | J. K. Hale, J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11–41. |
[32] | F. V. Atkinson, J. R. Haddock, On determining phase spaces for functional differential equations, Funkcial. Ekvac., 31 (1988), 331–347. Available from: https://www.researchgate.net/publication/266003717. |
[33] | Y. Hino, S. Murakami, T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Springer-Verlag, New York, 1991. https://doi.org/10.1007/BFb0084432 |
[34] | J. K. Hale, S. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7 |
[35] | S. Zhang, Comparison theorems on boundedness, Funkcial. Ekvac., 31 (1988), 179–196. |