Research article Special Issues

Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA

  • Received: 01 March 2023 Revised: 23 March 2023 Accepted: 02 April 2023 Published: 19 April 2023
  • In this paper we study different vaccination strategies that could have been implemented for the early COVID-19 pandemic. We use a demographic epidemiological mathematical model based on differential equations in order to investigate the efficacy of a variety of vaccination strategies under limited vaccine supply. We use the number of deaths as the metric to measure the efficacy of each of these strategies. Finding the optimal strategy for the vaccination programs is a complex problem due to the large number of variables that affect the outcomes. The constructed mathematical model takes into account demographic risk factors such as age, comorbidity status and social contacts of the population. We perform simulations to assess the performance of more than three million vaccination strategies which vary depending on the vaccine priority of each group. This study focuses on the scenario corresponding to the early vaccination period in the USA, but can be extended to other countries. The results of this study show the importance of designing an optimal vaccination strategy in order to save human lives. The problem is extremely complex due to the large amount of factors, high dimensionality and nonlinearities. We found that for low/moderate transmission rates the optimal strategy prioritizes high transmission groups, but for high transmission rates, the optimal strategy focuses on groups with high CFRs. The results provide valuable information for the design of optimal vaccination programs. Moreover, the results help to design scientific vaccination guidelines for future pandemics.

    Citation: Giulia Luebben, Gilberto González-Parra, Bishop Cervantes. Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10828-10865. doi: 10.3934/mbe.2023481

    Related Papers:

  • In this paper we study different vaccination strategies that could have been implemented for the early COVID-19 pandemic. We use a demographic epidemiological mathematical model based on differential equations in order to investigate the efficacy of a variety of vaccination strategies under limited vaccine supply. We use the number of deaths as the metric to measure the efficacy of each of these strategies. Finding the optimal strategy for the vaccination programs is a complex problem due to the large number of variables that affect the outcomes. The constructed mathematical model takes into account demographic risk factors such as age, comorbidity status and social contacts of the population. We perform simulations to assess the performance of more than three million vaccination strategies which vary depending on the vaccine priority of each group. This study focuses on the scenario corresponding to the early vaccination period in the USA, but can be extended to other countries. The results of this study show the importance of designing an optimal vaccination strategy in order to save human lives. The problem is extremely complex due to the large amount of factors, high dimensionality and nonlinearities. We found that for low/moderate transmission rates the optimal strategy prioritizes high transmission groups, but for high transmission rates, the optimal strategy focuses on groups with high CFRs. The results provide valuable information for the design of optimal vaccination programs. Moreover, the results help to design scientific vaccination guidelines for future pandemics.



    加载中


    [1] A. R. Tuite, L. Zhu, D. N. Fisman, J. A. Salomon, Alternative dose allocation strategies to increase benefits from constrained COVID-19 vaccine supply, Ann. Int. Med., 2021. https://doi.org/10.7326/M20-8137 doi: 10.7326/M20-8137
    [2] B. Balcik, E. Yucesoy, B. Akca, S. Karakaya, A. A. Gevsek, H. Baharmand, et al., A mathematical model for equitable in-country COVID-19 vaccine allocation, Int. J. Production Res., 60 (2022), 7502–7526. https://doi.org/10.1080/00207543.2022.2110014 doi: 10.1080/00207543.2022.2110014
    [3] K. M. Bubar, K. Reinholt, S. M. Kissler, M. Lipsitch, S. Cobey, Y. H. Grad, et al., Model-informed COVID-19 vaccine prioritization strategies by age and serostatus, Science, 371 (2021), 916–921. https://doi.org/10.1126/science.abe6959 doi: 10.1126/science.abe6959
    [4] M. Coccia, Pandemic prevention: Lessons from COVID-19, Encyclopedia, 1 (2021), 36. https://doi.org/10.3390/encyclopedia1020036 doi: 10.3390/encyclopedia1020036
    [5] C. Magazzino, M. Mele, M. Coccia, A machine learning algorithm to analyse the effects of vaccination on COVID-19 mortality, Epidemiol. Infect., 150 (2022), e168. https://doi.org/10.1017/S0950268822001418 doi: 10.1017/S0950268822001418
    [6] M. Frieman, A. D Harris, R. S. Herati, F. Krammer, A. Mantovani, M. Rescigno, et al., Sars-cov-2 vaccines for all but a single dose for covid-19 survivors, EBioMedicine, 68 (2021). https://doi.org/10.1016/j.ebiom.2021.103401 doi: 10.1016/j.ebiom.2021.103401
    [7] A. B. Hogan, P. Winskill, O. J. Watson, P. GT. Walker, C. Whittaker, M. Baguelin, et al., Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: A mathematical modelling analysis, Vaccine, 39 (2021), 2995–3006. https://doi.org/10.1016/j.vaccine.2021.04.002 doi: 10.1016/j.vaccine.2021.04.002
    [8] K. Liu, Y. Lou, Optimizing COVID-19 vaccination programs during vaccine shortages: A review of mathematical models, Infect. Disease Model., 2022. https://doi.org/10.1016/j.idm.2022.02.002 doi: 10.1016/j.idm.2022.02.002
    [9] C.. MacIntyre, V. Costantino, M. Trent, Modelling of COVID-19 vaccination strategies and herd immunity, in scenarios of limited and full vaccine supply in NSW, Australia, Vaccine, 40 (2022), 2506–2513. https://doi.org/10.1016/j.vaccine.2021.04.042 doi: 10.1016/j.vaccine.2021.04.042
    [10] H. Y. Mak, T. Dai, C. S. Tang, Managing two-dose COVID-19 vaccine rollouts with limited supply: Operations strategies for distributing time-sensitive resources, Product. Operat. Manag., 31 (2022), 4424–4442. https://doi.org/10.1111/poms.13862 doi: 10.1111/poms.13862
    [11] E. G. Martin, G. S. Birkhead, D. R. Holtgrave, Maintaining a focus on health equity during the COVID-19 vaccine rollout, J. Public Health Manag. Pract., 27 (2021), 226–228. https://doi.org/10.1097/PHH.0000000000001359 doi: 10.1097/PHH.0000000000001359
    [12] E. B. Noh, H. K. Nam, H. Lee, Which group should be vaccinated first?: A systematic review, Infect. Chemother., 53 (2021), 261–270.
    [13] S. K. Sarkar, Md M. Morshed, Spatial priority for COVID-19 vaccine rollout against limited supply, Heliyon, 7 (2021), e08419. https://doi.org/10.1016/j.heliyon.2021.e08419 doi: 10.1016/j.heliyon.2021.e08419
    [14] E. Shim, Optimal allocation of the limited COVID-19 vaccine supply in South Korea, J. Clin. Med., 10 (2021), 591. https://doi.org/10.3390/jcm10040591 doi: 10.3390/jcm10040591
    [15] Y. Su, Y. Li, Y. Liu, Common demand vs. limited supply—how to serve the global fight against COVID-19 through proper supply of COVID-19 vaccines, Int. J. Environ. Res. Public Health, 19 (2022), 1339. https://doi.org/10.3390/ijerph19031339 doi: 10.3390/ijerph19031339
    [16] Md R. Islam, T. Oraby, A. McCombs, M. M. Chowdhury, M. Al-Mamun, M. G. Tyshenko, et al., Evaluation of the United States COVID-19 vaccine allocation strategy, PloS One, 16 (2021), e0259700. https://doi.org/10.1371/journal.pone.0259700 doi: 10.1371/journal.pone.0259700
    [17] M. Coccia, Sources, diffusion and prediction in COVID-19 pandemic: Lessons learned to face next health emergency, AIMS Public Health, 10 (2023), 145–168. https://doi.org/10.3934/publichealth.2023012 doi: 10.3934/publichealth.2023012
    [18] M. Coccia, Covid-19 pandemic over 2020 (with lockdowns) and 2021 (with vaccinations): similar effects for seasonality and environmental factors, Environ. Res., 208 (2022), 112711. https://doi.org/10.1016/j.envres.2022.112711 doi: 10.1016/j.envres.2022.112711
    [19] I. Benati, M. Coccia, Global analysis of timely COVID-19 vaccinations: Improving governance to reinforce response policies for pandemic crises, Int. J. Health Govern., (ahead-of-print), (2022). https://doi.org/10.1108/IJHG-07-2021-0072
    [20] S. Bansal, B. Pourbohloul, L. A. Meyers, A comparative analysis of influenza vaccination programs. PLoS Med., 3 (2006), e387. https://doi.org/10.1371/journal.pmed.0030387 doi: 10.1371/journal.pmed.0030387
    [21] D. Weycker, J. Edelsberg, M. E. Halloran, I. M. Longini Jr, A. Nizam, V. Ciuryla, et al., Population-wide benefits of routine vaccination of children against influenza, Vaccine, 23 (2005), 1284–1293. https://doi.org/10.1016/j.vaccine.2004.08.044 doi: 10.1016/j.vaccine.2004.08.044
    [22] M. Ratti, D. Concina, M. Rinaldi, E. Salinelli, A. M. Di Brisco, D. Ferrante, et al., Vaccination strategies against seasonal influenza in long term care setting: Lessons from a mathematical modelling study, Vaccines, 11 (2022), 32. https://doi.org/10.3390/vaccines11010032 doi: 10.3390/vaccines11010032
    [23] F. G. Sandmann, E. van Leeuwen, S. Bernard-Stoecklin, I. Casado, J. Castilla, L. Domegan, et al., Health and economic impact of seasonal influenza mass vaccination strategies in European settings: A mathematical modelling and cost-effectiveness analysis, Vaccine, 40 (2022), 1306–1315. https://doi.org/10.1016/j.vaccine.2022.01.015 doi: 10.1016/j.vaccine.2022.01.015
    [24] J. F. Vesga, M. H. Clark, E. Ayazi, A. Apolloni, T. Leslie, W. J. Edmunds, et al., Transmission dynamics and vaccination strategies for Crimean-Congo haemorrhagic fever virus in Afghanistan: A modelling study, PLoS Neglect. Trop. Diseases, 16 (2022), e0010454. https://doi.org/10.1371/journal.pntd.0010454 doi: 10.1371/journal.pntd.0010454
    [25] R.J. Villanueva, V. Sánchez-Alonso, L. Acedo, A mathematical model for human papillomavirus vaccination strategies in a random network, Math. Methods Appl. Sci., 45 (2022), 3284–3294. https://doi.org/10.1002/mma.7205 doi: 10.1002/mma.7205
    [26] Y. Choi, J. S. Kim, J. E. Kim, H. Choi, C. H. Lee, Vaccination prioritization strategies for COVID-19 in Korea: A mathematical modeling approach, Int. J. Environ. Res. Public Health, 18 (2021), 4240. https://doi.org/10.3390/ijerph18084240 doi: 10.3390/ijerph18084240
    [27] M. L. Diagne, H. Rwezaura, S. Y. Tchoumi, J. M. Tchuenche, A mathematical model of COVID-19 with vaccination and treatment, Comput. Math. Methods Med., 2021 (2021). https://doi.org/10.1155/2021/1250129 doi: 10.1155/2021/1250129
    [28] J. P. Gutiérrez-Jara, C. Saracini, Risk perception influence on vaccination program on COVID-19 in Chile: A mathematical model, Int. J. Environ. Res. Public Health, 19 (2022), 2022. https://doi.org/10.3390/ijerph19042022 doi: 10.3390/ijerph19042022
    [29] A. Rǎdulescu, C. Williams, K. Cavanagh, Management strategies in a SEIR-type model of COVID 19 community spread, Sci. Rep., 10 (2020), 1–16. https://doi.org/10.1038/s41598-020-77628-4 doi: 10.1038/s41598-020-77628-4
    [30] T. Tran, N. B. Wikle, E. Albert, H. Inam, E. Strong, K. Brinda, et al., Optimal SARS-CoV-2 vaccine allocation using real-time attack-rate estimates in Rhode Island and Massachusetts, BMC Med., 19 (2021), 1–14. https://doi.org/10.1186/s12916-021-02038-w doi: 10.1186/s12916-021-02038-w
    [31] C. Zuo, Z. Meng, F. Zhu, Y. Zheng, Y. Ling, Assessing vaccination prioritization strategies for COVID-19 in South Africa based on age-specific compartment model, Front. Public Health, 10 (2022). https://doi.org/10.3389/fpubh.2022.876551 doi: 10.3389/fpubh.2022.876551
    [32] A. L. Beukenhorst, C. M. Koch, C. Hadjichrysanthou, G. Alter, F. de Wolf, R. M. Anderson, et al., SARS-CoV-2 elicits non-sterilizing immunity and evades vaccine-induced immunity: Implications for future vaccination strategies, European J. Epidemiol., (2023), 1–6. https://doi.org/10.1007/s10654-023-00965-x doi: 10.1007/s10654-023-00965-x
    [33] M. S. Hadi, B. Bilgehan, Fractional COVID-19 modeling and analysis on successive optimal control policies, Fractal Fract., 6 (2022), 533. https://doi.org/10.3390/fractalfract6100533 doi: 10.3390/fractalfract6100533
    [34] V. Kodesia, A. Suri, S. Azad, An optimal vaccination strategy for pandemic management and its impact on economic recovery, Current. Sci., 124 (2023), 319. https://doi.org/10.18520/cs/v124/i3/319-326 doi: 10.18520/cs/v124/i3/319-326
    [35] S. Saha, G. Samanta, J. J. Nieto, Impact of optimal vaccination and social distancing on COVID-19 pandemic, Math. Comput. Simul., 200 (2022), 285–314. https://doi.org/10.1016/j.matcom.2022.04.025 doi: 10.1016/j.matcom.2022.04.025
    [36] M. A. Acuña-Zegarra, S. Díaz-Infante, D. Baca-Carrasco, D. Olmos-Liceaga, COVID-19 optimal vaccination policies: A modeling study on efficacy, natural and vaccine-induced immunity responses, Math. Biosci., 337 (2021), 108614. https://doi.org/10.1016/j.mbs.2021.108614 doi: 10.1016/j.mbs.2021.108614
    [37] M. Coccia, Optimal levels of vaccination to reduce COVID-19 infected individuals and deaths: A global analysis, Environ. Res., 204 (2022), 112314. https://doi.org/10.1016/j.envres.2021.112314 doi: 10.1016/j.envres.2021.112314
    [38] B. H. Foy, B. Wahl, K. Mehta, A. Shet, G. I. Menon, C. Britto, Comparing COVID-19 vaccine allocation strategies in India: A mathematical modelling study, Int. J. Infect. Diseases, 103 (2021), 431–438. https://doi.org/10.1016/j.ijid.2020.12.075 doi: 10.1016/j.ijid.2020.12.075
    [39] Y. Tu, T. Hayat, A. Hobiny, X. Meng, Modeling and multi-objective optimal control of reaction-diffusion COVID-19 system due to vaccination and patient isolation, Appl. Math. Model., 118 (2023), 556–591. https://doi.org/10.1016/j.apm.2023.02.002 doi: 10.1016/j.apm.2023.02.002
    [40] C. W. S. Chen, M. K. P. So, F. C. Liu, Assessing government policies' impact on the COVID-19 pandemic and elderly deaths in East Asia, Epidemiol. Infect., 150 (2022), e161. https://doi.org/10.1017/S0950268822001388 doi: 10.1017/S0950268822001388
    [41] S. Zhou, S. Zhou, Z. Zheng, J. Lu, Optimizing spatial allocation of COVID-19 vaccine by agent-based spatiotemporal simulations, GeoHealth, 5 (2021), e2021GH000427. https://doi.org/10.1029/2021GH000427 doi: 10.1029/2021GH000427
    [42] L. S. Ferreira, G. B. de Almeida, M. E. Borges, L. M. Simon, S. Poloni, Â. M. Bagattini, et al., Modelling optimal vaccination strategies against COVID-19 in a context of Gamma variant predominance in Brazil, Vaccine, 40 (2022), 6616–6624. https://doi.org/10.1016/j.vaccine.2022.09.082 doi: 10.1016/j.vaccine.2022.09.082
    [43] G. Gonzalez-Parra, Analysis of delayed vaccination regimens: A mathematical modeling approach, Epidemiologia, 2 (2021), 271–293. https://doi.org/10.3390/epidemiologia2030021 doi: 10.3390/epidemiologia2030021
    [44] S. R. Kadire, R. M. Wachter, N. Lurie, Delayed second dose versus standard regimen for Covid-19 vaccination, New England J. Med., 384 (2021), e28. https://doi.org/10.1056/NEJMclde2101987 doi: 10.1056/NEJMclde2101987
    [45] S. M. Moghadas, T. N. Vilches, K. Zhang, S. Nourbakhsh, P. Sah, M. C. Fitzpatrick, A. P. Galvani, Evaluation of COVID-19 vaccination strategies with a delayed second dose, PLoS Biol., 19 (2021), e3001211. https://doi.org/10.1371/journal.pbio.3001211 doi: 10.1371/journal.pbio.3001211
    [46] S. Romero-Brufau, A. Chopra, A. J. Ryu, E. Gel, R. Raskar, W. Kremers, et al., Public health impact of delaying second dose of BNT162b2 or mRNA-1273 covid-19 vaccine: Simulation agent based modeling study, BMJ, 373 (2021). https://doi.org/10.1136/bmj.n1087 doi: 10.1136/bmj.n1087
    [47] L. Matrajt, J. Eaton, T. Leung, D. Dimitrov, J. T. Schiffer, D. A. Swan, H. Janes, Optimizing vaccine allocation for COVID-19 vaccines shows the potential role of single-dose vaccination, Nat. Commun., 12 (2021), 3449. https://doi.org/10.1038/s41467-021-23761-1 doi: 10.1038/s41467-021-23761-1
    [48] K. Spiliotis, C. C. Koutsoumaris, A. I. Reppas, L. A. Papaxenopoulou, J. Starke, H. Hatzikirou, Optimal vaccine roll-out strategies including social distancing for pandemics, Iscience, 25 (2022), 104575. https://doi.org/10.1016/j.isci.2022.104575 doi: 10.1016/j.isci.2022.104575
    [49] L. Matrajt, J. Eaton, T. Leung, E. R. Brown, Vaccine optimization for COVID-19, who to vaccinate first? Sci. Adv., 7 (2021), eabf1374. https://doi.org/10.1126/sciadv.abf1374 doi: 10.1126/sciadv.abf1374
    [50] G. González-Parra, M. Díaz-Rodríguez, A. J. Arenas, Mathematical modeling to study the impact of immigration on the dynamics of the COVID-19 pandemic: A case study for Venezuela, Spatial and Spatio-temporal Epidemiology, 43 (2022), 100532. https://doi.org/10.1016/j.sste.2022.100532 doi: 10.1016/j.sste.2022.100532
    [51] F. Parino, L. Zino, G. C. Calafiore, A. Rizzo, A model predictive control approach to optimally devise a two-dose vaccination rollout: A case study on COVID-19 in Italy, Int. J. Robust Monlinear Control, (2021). https://doi.org/10.1002/rnc.5728 doi: 10.1002/rnc.5728
    [52] S. Moore, E. M. Hill, M. J. Tildesley, L. Dyson, M. J. Keeling, Vaccination and non-pharmaceutical interventions for covid-19: a mathematical modelling study, Lancet Infect. Diseases, (2021). https://doi.org/10.1016/S1473-3099(21)00143-2 doi: 10.1016/S1473-3099(21)00143-2
    [53] Y. Bai, L. Yao, T. Wei, F. Tian, D. Y. Jin, L. Chen, et al., Presumed asymptomatic carrier transmission of COVID-19, JAMA, 323 (2020), 1406–1407. https://doi.org/10.1001/jama.2020.2565 doi: 10.1001/jama.2020.2565
    [54] D. Buitrago-Garcia, D. Egli-Gany, M. J. Counotte, S. Hossmann, H. Imeri, A. M. Ipekci, et al., Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis, PLoS Med., 17 (2020), e1003346. https://doi.org/10.1371/journal.pmed.1003346 doi: 10.1371/journal.pmed.1003346
    [55] L. Huang, X. Zhang, X. Zhang, Z. Wei, L. Zhang, J. Xu, et al., Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective contact-tracing study, J. Infect., (2020). https://doi.org/10.1016/j.jinf.2020.03.006 doi: 10.1016/j.jinf.2020.03.006
    [56] K. Mizumoto, K. Kagaya, A. Zarebski, G. Chowell, Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the diamond princess cruise ship, Yokohama, Japan, 2020, Eurosurveillance, 25 (2020), 2000180. https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180 doi: 10.2807/1560-7917.ES.2020.25.10.2000180
    [57] S. W. Park, D. M. Cornforth, J. Dushoff, J. S. Weitz, The time scale of asymptomatic transmission affects estimates of epidemic potential in the COVID-19 outbreak, Epidemics, (2020), 100392. https://doi.org/10.1016/j.epidem.2020.100392 doi: 10.1016/j.epidem.2020.100392
    [58] S. Shao, D. Zhou, R. He, J. Li, S. Zou, K. Mallery, et al., Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings, J. Aerosol Sci., 151 (2020), 105661. https://doi.org/10.1016/j.jaerosci.2020.105661 doi: 10.1016/j.jaerosci.2020.105661
    [59] M. Gandhi, D. S. Yokoe, D. V. Havlir, Asymptomatic transmission, the achilles' heel of current strategies to control COVID-19, New England J. Med., 382 (2020), 2158–2160. https://doi.org/10.1056/NEJMe2009758 doi: 10.1056/NEJMe2009758
    [60] R. Kinoshita, A. Anzai, S. Jung, N. M Linton, T. Miyama, T. Kobayashi, et al., Containment, contact tracing and asymptomatic transmission of novel coronavirus disease (COVID-19): A modelling study, J. Clin. Med., 9 (2020), 3125. https://doi.org/10.3390/jcm9103125 doi: 10.3390/jcm9103125
    [61] D. Han, R. Li, Y. Han, R. Zhang, J. Li, COVID-19: Insight into the asymptomatic SARS-CoV-2 infection and transmission, Int. J. Biol. Sci., 16 (2020), 2803. https://doi.org/10.7150/ijbs.48991 doi: 10.7150/ijbs.48991
    [62] S. C. Teixeira, Mild and asymptomatic cases of COVID-19 are potential threat for faecal–oral transmission, Brazilian J. Infect. Diseases, 24 (2020), 368–368. https://doi.org/10.1016/j.bjid.2020.06.003 doi: 10.1016/j.bjid.2020.06.003
    [63] H. M. Dobrovolny, Modeling the role of asymptomatics in infection spread with application to SARS-CoV-2, Plos One, 15 (2020), e0236976. https://doi.org/10.1371/journal.pone.0236976 doi: 10.1371/journal.pone.0236976
    [64] L. A. Nikolai, C. G. Meyer, P. G. Kremsner, T. P. Velavan, Asymptomatic SARS coronavirus 2 infection: Invisible yet invincible, Int. J. Infect. Diseases, 2020. https://doi.org/10.1016/j.ijid.2020.08.076 doi: 10.1016/j.ijid.2020.08.076
    [65] A. Kronbichler, D. Kresse, S. Yoon, K. H. Lee, M. Effenberger, J. I. Shin, Asymptomatic patients as a source of COVID-19 infections: A systematic review and meta-analysis, Int. J. Infect. Diseases, 98 (2020), 180–186. https://doi.org/10.1016/j.ijid.2020.06.052 doi: 10.1016/j.ijid.2020.06.052
    [66] J. He, Y. Guo, R. Mao, J. Zhang. Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis. J. Med. Virol., 93 (2021), 820–830. https://doi.org/10.1002/jmv.26326 doi: 10.1002/jmv.26326
    [67] M. A. Johansson, T. M. Quandelacy, S. Kada, P. V. Prasad, M. Steele, J. T. Brooks, et al., SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Network Open, 4 (2021), e2035057–e2035057. https://doi.org/10.1001/jamanetworkopen.2020.35057 doi: 10.1001/jamanetworkopen.2020.35057
    [68] A. Ogunbajo, B. O. Ojikutu, Acceptability of COVID-19 vaccines among Black immigrants living in the United States, Vaccine X, 12 (2022), 100196. https://doi.org/10.1016/j.jvacx.2022.100196 doi: 10.1016/j.jvacx.2022.100196
    [69] M. Coccia, Improving preparedness for next pandemics: Max level of COVID-19 vaccinations without social impositions to design effective health policy and avoid flawed democracies, Environ. Res., 213 (2022), 113566. https://doi.org/10.1016/j.envres.2022.113566 doi: 10.1016/j.envres.2022.113566
    [70] P. Block, M. Hoffman, I. J. Raabe, J. B. Dowd, C. Rahal, R. Kashyap, et al., Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world, Nat. Human Behav., (2020), 1–9. https://doi.org/10.1038/s41562-020-0898-6 doi: 10.1038/s41562-020-0898-6
    [71] S. Eker, Validity and usefulness of COVID-19 models, Human Soc. Sci. Commun., 7 (2020), 1–5. https://doi.org/10.1057/s41599-020-00553-4 doi: 10.1057/s41599-020-00553-4
    [72] P. C. Jentsch, M. Anand, C. T. Bauch, Prioritising COVID-19 vaccination in changing social and epidemiological landscapes: A mathematical modelling study, Lancet Infect. Diseases, 2021. https://doi.org/10.1016/S1473-3099(21)00057-8 doi: 10.1016/S1473-3099(21)00057-8
    [73] A. Qazi, J. Qazi, K. Naseer, M. Zeeshan, G. Hardaker, J. Z. Maitama, et al., Analyzing situational awareness through public opinion to predict adoption of social distancing amid pandemic COVID-19, J. Med. Virol., (2020). https://doi.org/10.1002/jmv.25840 doi: 10.1002/jmv.25840
    [74] S. M. Bartsch, K. J. O'Shea, M. C. Ferguson, M. E. Bottazzi, P. T. Wedlock, U. Strych, et al., Vaccine efficacy needed for a COVID-19 coronavirus vaccine to prevent or stop an epidemic as the sole intervention, Am. J. Prevent. Med., 59 (2020), 493–503. https://doi.org/10.1016/j.amepre.2020.06.011 doi: 10.1016/j.amepre.2020.06.011
    [75] G. González-Parra, A. J. Arenas, Mathematical modeling of SARS-CoV-2 Omicron wave under vaccination effects, Computation, 11 (2023), 36. https://doi.org/10.3390/computation11020036 doi: 10.3390/computation11020036
    [76] A. D. Paltiel, J. L. Schwartz, A. Zheng, R. P. Walensky, Clinical outcomes of a COVID-19 vaccine: Implementation over efficacy: Study examines how definitions and thresholds of vaccine efficacy, coupled with different levels of implementation effectiveness and background epidemic severity, translate into outcomes, Health Affairs, 40 (2021), 42–52. https://doi.org/10.1377/hlthaff.2020.02054 doi: 10.1377/hlthaff.2020.02054
    [77] C. Faes, S. Abrams, D. Van Beckhoven, G. Meyfroidt, E. Vlieghe, N. Hens, et al., Time between symptom onset, hospitalisation and recovery or death: Statistical analysis of Belgian COVID-19 patients, Int. J. Environ. Res. Public Health, 17 (2020), 7560. https://doi.org/10.3390/ijerph17207560 doi: 10.3390/ijerph17207560
    [78] J. S. Faust, C. del Rio, Assessment of Deaths From COVID-19 and From Seasonal Influenza, JAMA Int. Med., 5 (2020). https://doi.org/10.1001/jamainternmed.2020.2306 doi: 10.1001/jamainternmed.2020.2306
    [79] N. M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Impact of non-pharmaceutical interventions (npis) to reduce COVID-19 mortality and healthcare demand, Imperial College, London., (2020). https://doi.org/10.25561/77482 doi: 10.25561/77482
    [80] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study, The Lancet, (2020). https://doi.org/10.1016/S0140-6736(20)30566-3 doi: 10.1016/S0140-6736(20)30566-3
    [81] Centers for Disease Control and Prevention. https://covid.cdc.gov/covid-data-tracker/#vaccination-trends, 2022.
    [82] A. M. Al-Shaery, B. Hejase, A. Tridane, N. S. Farooqi, H. A. Jassmi, Agent-based modeling of the Hajj Rituals with the possible spread of COVID-19, Sustainability, 13 (2021), 6923. https://doi.org/10.3390/su13126923 doi: 10.3390/su13126923
    [83] G. González-Parra, L. Acedo, R. J. Villanueva-Micó, A. J. Arenas, Modeling the social obesity epidemic with stochastic networks, Phys. A Statist. Mechan. Appl., 389 (2010), 3692–3701. https://doi.org/10.1016/j.physa.2010.04.024 doi: 10.1016/j.physa.2010.04.024
    [84] G. González-Parra, R.-J. Villanueva, J. Ruiz-Baragaño, J. A. Moraño, Modelling influenza A (H1N1) 2009 epidemics using a random network in a distributed computing environment, Acta Trop., 143 (2015), 29–35. https://doi.org/10.1016/j.actatropica.2014.12.008 doi: 10.1016/j.actatropica.2014.12.008
    [85] M. Gribaudo, M. Iacono, D. Manini, COVID-19 spatial diffusion: A Markovian Agent-based model, Mathematics, 9 (2021), 485. https://doi.org/10.3390/math9050485 doi: 10.3390/math9050485
    [86] R. Hinch, W. J. M. Probert, A. Nurtay, M. Kendall, C. Wymant, M. Hall, et al., OpenABM-Covid19—an agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing, PLoS Comput. Biol., 17 (2021), e1009146. https://doi.org/10.1371/journal.pcbi.1009146 doi: 10.1371/journal.pcbi.1009146
    [87] E. Hunter, J. D. Kelleher, Validating and testing an agent-based model for the spread of COVID-19 in Ireland, Algorithms, 15 (2022), 270. https://doi.org/10.3390/a15080270 doi: 10.3390/a15080270
    [88] C. C. Kerr, R. M. Stuart, D. Mistry, R. G. Abeysuriya, K. Rosenfeld, G. R. Hart, et al., Covasim: An agent-based model of COVID-19 dynamics and interventions, PLOS Comput. Biol., 17 (2021), e1009149. https://doi.org/10.1371/journal.pcbi.1009149 doi: 10.1371/journal.pcbi.1009149
    [89] A. Rajabi, A. V. Mantzaris, E. C. Mutlu, O. O. Garibay, Investigating dynamics of COVID-19 spread and containment with agent-based modeling, Appl. Sci., 11 (2021), 5367. https://doi.org/10.3390/app11125367 doi: 10.3390/app11125367
    [90] P. Sobkowicz, A. Sobkowicz, Agent based model of anti-vaccination movements: simulations and comparison with empirical data, Vaccines, 9 (2021), 809. https://doi.org/10.3390/vaccines9080809 doi: 10.3390/vaccines9080809
    [91] C. Sun, S. Richard, T. Miyoshi, N. Tsuzu, Analysis of COVID-19 spread in Tokyo through an agent-based model with data assimilation, J. Clin. Med., 11 (2022), 2401. https://doi.org/10.3390/jcm11092401 doi: 10.3390/jcm11092401
    [92] A. Cattaneo, A. Vitali, M. Mazzoleni, F. Previdi, An agent-based model to assess large-scale COVID-19 vaccination campaigns for the Italian territory: The case study of Lombardy region, Computer Methods Programs Biomed., 224 (2022), 107029. https://doi.org/10.1016/j.cmpb.2022.107029 doi: 10.1016/j.cmpb.2022.107029
    [93] B. Faucher, R. Assab, J. Roux, D. Levy-Bruhl, C. Tran Kiem, S. Cauchemez, et al., Agent-based modelling of reactive vaccination of workplaces and schools against COVID-19, Nat. Commun., 13 (2022), 1414. https://doi.org/10.1038/s41467-022-29015-y doi: 10.1038/s41467-022-29015-y
    [94] L. Kou, X. Wang, Y. Li, X. Guo, H. Zhang, A multi-scale agent-based model of infectious disease transmission to assess the impact of vaccination and non-pharmaceutical interventions: The COVID-19 case, J. Safety Sci. Resil., 2 (2021), 199–207. https://doi.org/10.1016/j.jnlssr.2021.08.005 doi: 10.1016/j.jnlssr.2021.08.005
    [95] D. M. Altmann, R. J. Boyton, R. Beale, Immunity to SARS-CoV-2 variants of concern, Science, 371 (2021), 1103–1104. https://doi.org/10.1126/science.abg7404 doi: 10.1126/science.abg7404
    [96] Y. J. Hou, S. Chiba, P. Halfmann, C. Ehre, M. Kuroda, K. H. Dinnon, et al., SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo, Science, 2020. https://doi.org/10.1126/science.abe8499 doi: 10.1126/science.abe8499
    [97] G. Iacobucci, Covid-19: New UK variant may be linked to increased death rate, early data indicate, BMJ, 372 (2021), n230. http://dx.doi.org/10.1136/bmj.n230 doi: 10.1136/bmj.n230
    [98] M. Le Page, Threats from new variants, New Scientist, 249 (2021), 8–9. https://doi.org/10.1016/S0262-4079(21)00003-8 doi: 10.1016/S0262-4079(21)00003-8
    [99] E. Mahase, Covid-19: What new variants are emerging and how are they being investigated? BMJ (Clin. Res. ed.), 372 (2021), n158. https://doi.org/10.1136/bmj.n158 doi: 10.1136/bmj.n158
    [100] K. A. Twohig, T. Nyberg, A. Zaidi, S. Thelwall, M. A. Sinnathamby, S. Aliabadi, et al., Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (b.1.617.2) compared with alpha (b.1.1.7) variants of concern: a cohort study. Lancet Infect. Diseases, (2021). https://doi.org/10.1016/S1473-3099(21)00475-8 doi: 10.1016/S1473-3099(21)00475-8
    [101] C. van Oosterhout, N. Hall, H. Ly, K. M. Tyler, COVID-19 evolution during the pandemic–Implications of new SARS-CoV-2 variants on disease control and public health policies, Virulence, 12 (2021), 507. https://doi.org/10.1080/21505594.2021.1877066 doi: 10.1080/21505594.2021.1877066
    [102] R. P. Walensky, H. T. Walke, A. S. Fauci, SARS-CoV-2 variants of concern in the United States—challenges and opportunities, JAMA, 325 (2021), 1037–1038. https://doi.org/10.1001/jama.2021.2294 doi: 10.1001/jama.2021.2294
    [103] M. Aghaali, G. Kolifarhood, R. Nikbakht, H. M. Saadati, S. S. Hashemi Nazari, Estimation of the serial interval and basic reproduction number of COVID-19 in Qom, Iran, and three other countries: A data-driven analysis in the early phase of the outbreak, Transbound. Emerg. Diseases, 67 (2020), 2860–2868. https://doi.org/10.1111/tbed.13656 doi: 10.1111/tbed.13656
    [104] Y. Alimohamadi, M. Taghdir, M. Sepandi, Estimate of the basic reproduction number for COVID-19 a systematic review and meta-analysis, J. Prevent. Med. Public Health, 53 (2020), 151. https://doi.org/10.3961/jpmph.20.076 doi: 10.3961/jpmph.20.076
    [105] B. Dhungel, Md S. Rahman, Md M. Rahman, A. KC. Bhandari, P. M. Le, N. A. Biva, et al., Reliability of early estimates of the basic reproduction number of COVID-19: A systematic review and meta-analysis, Int. J. Environ. Res. Public Health, 19 (2022), 11613. https://doi.org/10.3390/ijerph191811613 doi: 10.3390/ijerph191811613
    [106] I. Locatelli, B. Trächsel, V. Rousson, Estimating the basic reproduction number for COVID-19 in Western Europe, Plos One, 16 (2021), e0248731. https://doi.org/10.1371/journal.pone.0248731 doi: 10.1371/journal.pone.0248731
    [107] I. Salom, A. Rodic, O. Milicevic, D. Zigic, M. Djordjevic, M. Djordjevic, Effects of demographic and weather parameters on COVID-19 basic reproduction number, Front. Ecol. Evolut., 8 (2021), 617841. https://doi.org/10.3389/fevo.2020.617841 doi: 10.3389/fevo.2020.617841
    [108] P. Shil, N. M. Atre, A. A. Patil, B. V. Tandale, P. Abraham, District-wise estimation of basic reproduction number ($R_0$) for COVID-19 in India in the initial phase, Spatial Inform. Res., (2021), pages 1–9. https://doi.org/10.1007/s41324-021-00412-7
    [109] A. Mallela, J. Neumann, E. F. Miller, Y. Chen, R. G. Posner, Y. T. Lin, et al., Bayesian inference of state-level COVID-19 basic reproduction numbers across the United States, Viruses, 14 (2022), 157. https://doi.org/10.3390/v14010157 doi: 10.3390/v14010157
    [110] Y. Choi, J. S. Kim, H. Choi, H. Lee, C. H. Lee, Assessment of social distancing for controlling COVID-19 in Korea: an age-structured modeling approach, Int. J. Environ. Res. Public Health, 17 (2020), 7474. https://doi.org/10.3390/ijerph17207474 doi: 10.3390/ijerph17207474
    [111] K. TD. Eames, N. L. Tilston, E. Brooks-Pollock, W. J. Edmunds, Measured dynamic social contact patterns explain the spread of H1N1v influenza, PLoS Comput. Biol., 8 (2012), e1002425. https://doi.org/10.1371/journal.pcbi.1002425 doi: 10.1371/journal.pcbi.1002425
    [112] D. S. I. Kanté, A. Jebrane, A. Bouchnita, A. Hakim, Estimating the risk of contracting COVID-19 in different settings using a multiscale transmission dynamics model, Mathematics, 11 (2023), 254. https://doi.org/10.3390/math11010254 doi: 10.3390/math11010254
    [113] M. Kimathi, S. Mwalili, V. Ojiambo, D. K. Gathungu, Age-structured model for COVID-19 effectiveness of social distancing and contact reduction in Kenya, Infect. Disease Model., 6 (2021), 15–23. https://doi.org/10.1016/j.idm.2020.10.012 doi: 10.1016/j.idm.2020.10.012
    [114] S. Lee, H. Y. Park, H. Ryu, J. W. Kwon, Age-specific mathematical model for tuberculosis transmission dynamics in south korea. https://doi.org/10.3390/math9080804
    [115] B. Ogunjimi, N. Hens, N. Goeyvaerts, M. Aerts, P. Van Damme, P. Beutels, Using empirical social contact data to model person to person infectious disease transmission: an illustration for varicella, Math. Biosci., 218 (2009), 80–87. https://doi.org/10.1016/j.mbs.2008.12.009 doi: 10.1016/j.mbs.2008.12.009
    [116] K. Prem, A. R. Cook, M. Jit, Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLoS Comput. Biol., 13 (2017), e1005697. https://doi.org/10.1371/journal.pcbi.1005697 doi: 10.1371/journal.pcbi.1005697
    [117] A. Hernández-Vásquez, D. Azañedo, R. Vargas-Fernández, G. Bendezu-Quispe, Association of comorbidities with pneumonia and death among COVID-19 patients in Mexico: a nationwide cross-sectional study, J. Prevent. Med. Public Health, 53 (2020), 211. https://doi.org/10.3961/jpmph.20.186 doi: 10.3961/jpmph.20.186
    [118] M. van Gerwen, M. Alsen, C. Little, J. Barlow, E. Genden, L. Naymagon, et al., Risk factors and outcomes of COVID-19 in New York City; a retrospective cohort study, J. Med. Virol., 93 (2021), 907–915. https://doi.org/10.1002/jmv.26337 doi: 10.1002/jmv.26337
    [119] S. Y. Tartof, L. Qian, V. Hong, R. Wei, R. F. Nadjafi, H. Fischer, et al., Obesity and mortality among patients diagnosed with COVID-19: results from an integrated health care organization, Ann. Int. Med., 173 (2020), 773–781. https://doi.org/10.7326/M20-3742 doi: 10.7326/M20-3742
    [120] C. A. Latkin, L. Dayton, G. Yi, B. Colon, X. Kong, Mask usage, social distancing, racial, and gender correlates of covid-19 vaccine intentions among adults in the us, PloS One, 16 (2021), e0246970. https://doi.org/10.1371/journal.pone.0246970 doi: 10.1371/journal.pone.0246970
    [121] A. Godbout, M. Drolet, M. Mondor, M. Simard, C. Sauvageu, G. De Serres, et al., Time trends in social contacts of individuals according to comorbidity and vaccination status, before and during the COVID-19 pandemic, BMC Med., 20 (2022), e0246970. https://doi.org/10.1186/s12916-022-02398-x doi: 10.1186/s12916-022-02398-x
    [122] Centers for Disease Control and Prevention. https://www.cdc.gov/covid-data-tracker, 2021.
    [123] S. Ghisolfi, I. Almås, J. C. Sandefur, T. von Carnap, J. Heitner, T. Bold, Predicted COVID-19 fatality rates based on age, sex, comorbidities and health system capacity, BMJ Global Health, 5 (2020), e003094. https://doi.org/10.1136/bmjgh-2020-003094 doi: 10.1136/bmjgh-2020-003094
    [124] A. T. Levin, W. P. Hanage, N. Owusu-Boaitey, K. B. Cochran, S. P Walsh, G. Meyerowitz-Katz, Assessing the age specificity of infection fatality rates for COVID-19 systematic review, meta-analysis, and public policy implications, European J. Epidemiol., 15 (2020), 1123–1138. https://doi.org/10.1007/s10654-020-00698-1 doi: 10.1007/s10654-020-00698-1
    [125] A. A. Onovo, A. Kalaiwo, C. Obanubi, G. Odezugo, J. Estill, O. Keiser, Estimates of the COVID-19 infection fatality rate for 48 African countries: a model-based analysis, BioMed, 1 (2021), 63–79. https://doi.org/10.3390/biomed1010005 doi: 10.3390/biomed1010005
    [126] J. Pan, J. M. St. Pierre, T. A. Pickering, N. L. Demirjian, B. KK. Fields, B. Desai, et al., Coronavirus disease 2019 (covid-19): A modeling study of factors driving variation in case fatality rate by country, Int. J. Environ. Res. Public Health, 17 (2020), 8189. https://doi.org/10.3390/ijerph17218189 doi: 10.3390/ijerph17218189
    [127] A. M. Pezzullo, C. Axfors, D. G. Contopoulos-Ioannidis, A. Apostolatos, J. P. A. Ioannidis, Age-stratified infection fatality rate of COVID-19 in the non-elderly population, Environ. Res., 216 (2023), 114655. https://doi.org/10.1016/j.envres.2022.114655 doi: 10.1016/j.envres.2022.114655
    [128] E. Shim, Regional variability in COVID-19 case fatality rate in Canada, February–December 2020, Int. J. Environ. Res. Public Health, 18 (2021), 1839. https://doi.org/10.3390/ijerph18041839 doi: 10.3390/ijerph18041839
    [129] C. M. Verrelli, F. Della Rossa, Two-age-structured COVID-19 epidemic model: Estimation of virulence parameters to interpret effects of national and regional feedback interventions and vaccination, Mathematics, 9 (2021), 2414. https://doi.org/10.3390/math9192414 doi: 10.3390/math9192414
    [130] Centers for Disease Control and Prevention, https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html, 2022.
    [131] P. Boersma, L. Black, B. Ward, Prevalence of multiple chronic conditions among us adults, 2018, Prevent. Chron. Disease, 17 (2020). https://doi.org/10.5888/pcd17.200130 doi: 10.5888/pcd17.200130
    [132] Johns Hopkins University and Medicine, https://coronavirus.jhu.edu, 2020.
    [133] Wordometer, https://www.worldometers.info/coronavirus/country/us/, 2020.
    [134] United States Census Bureau, 2016-2020 american community survey 5-year estimates. https://data.census.gov/table?q = population+age+gender & tid = ACSST5Y2020.S0101, 2020.
    [135] Centers for Disease Control and Prevention, Covid-19 vaccination and case trends by age group, united states, Technical report, 2022.
    [136] Food and Drug Administration, Coronavirus (covid-19) update: FDA authorizes pfizer-biontech covid-19 vaccine for emergency use in children 5 through 11 years of age, FDA News Release, 2021.
    [137] Food and Drug Administration, Coronavirus (covid-19) update: FDA authorizes moderna and pfizer-biontech COVID-19 vaccines for children down to 6 months of age, FDA News Release, 2022.
    [138] M. L. N. Mbah, J. Medlock, L. A. Meyers, A. P. Galvani, J. P. Townsend, Optimal targeting of seasonal influenza vaccination toward younger ages is robust to parameter uncertainty, Vaccine, 31 (2013), 3079–3089. https://doi.org/10.1016/j.vaccine.2013.04.052 doi: 10.1016/j.vaccine.2013.04.052
    [139] V. T. Reckers-Droog, N. J. A. Van Exel, W. B. F. Brouwer, Looking back and moving forward: on the application of proportional shortfall in healthcare priority setting in the Netherlands, Health Policy, 122 (2018), 621–629. https://doi.org/10.1016/j.healthpol.2018.04.001 doi: 10.1016/j.healthpol.2018.04.001
    [140] D.F. Aranda, G. González-Parra, T. Benincasa, Mathematical modeling and numerical simulations of Zika in Colombia considering mutation, Math. Comput. Simul., 163 (2019), 1–18. https://doi.org/10.1016/j.matcom.2019.02.009 doi: 10.1016/j.matcom.2019.02.009
    [141] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, et al., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25 (2009), 1923–1929. https://doi.org/10.1093/bioinformatics/btp358 doi: 10.1093/bioinformatics/btp358
    [142] S. Zhang, J. Ponce, Z. Zhang, G. Lin, G. Karniadakis, An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City, PLoS Comput. Biol., 17 (2021), e1009334. https://doi.org/10.1371/journal.pcbi.1009334V doi: 10.1371/journal.pcbi.1009334V
    [143] S. Dahal, R. Luo, R. K. Subedi, M. Dhimal, G. Chowell, Transmission dynamics and short-term forecasts of COVID-19: Nepal 2020/2021, Epidemiologia, 2 (2021), 639–659. https://doi.org/10.3390/epidemiologia2040043 doi: 10.3390/epidemiologia2040043
    [144] N. Lam, P. Docherty, R. Murray, Practical identifiability of parametrised models: A review of benefits and limitations of various approaches, Math. Comput. Simul., (2022). https://doi.org/10.1016/j.matcom.2022.03.020 doi: 10.1016/j.matcom.2022.03.020
    [145] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, New England J. Med., (2020). https://doi.org/10.1056/NEJMoa2001316 doi: 10.1056/NEJMoa2001316
    [146] M. Amaku, D. T. Covas, F. A. B. Coutinho, R. S. Azevedo, E. Massad, Modelling the impact of delaying vaccination against SARS-CoV-2 assuming unlimited vaccine supply, Theor. Biol. Med. Model., 18 (2021), 1–11. https://doi.org/10.1186/s12976-021-00143-0 doi: 10.1186/s12976-021-00143-0
    [147] R. C. Barnard, N. G. Davies, M. Jit, W. J. Edmunds, Modelling the medium-term dynamics of SARS-CoV-2 transmission in England in the Omicron era, Nat. Commun., 13 (2022), 4879. https://doi.org/10.1038/s41467-022-32404-y doi: 10.1038/s41467-022-32404-y
    [148] F. A. Bartha, P. Boldog, T. Tekeli, Z. Vizi, A. Dénes, G. Röst, Potential severity, mitigation, and control of Omicron waves depending on pre-existing immunity and immune evasion, Trends in Biomathematics: Stability and Oscillations in Environmental, Social, and Biological Models: Selected Works from the BIOMAT Consortium Lectures, Rio de Janeiro, Brazil, 2021, 2022, pages 407–419. https://doi.org/10.1007/978-3-031-12515-7-22
    [149] L. Dyson, E. M. Hill, S. Moore, J. Curran-Sebastian, M. J. Tildesley, K. A. Lythgoe, et al., Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics, Nat. Commun., 12 (2021), 1–13. https://doi.org/10.1038/s41467-021-25915-7 doi: 10.1038/s41467-021-25915-7
    [150] G. González-Parra, A. J. Arenas, Qualitative analysis of a mathematical model with presymptomatic individuals and two SARS-CoV-2 variants, Comput. Appl. Math., 40 (2021), 199. https://doi.org/10.1007/s40314-021-01592-6 doi: 10.1007/s40314-021-01592-6
    [151] E. A. Le Rutte, A. J. Shattock, N. Chitnis, S. L. Kelly, M. A. Penny, Modelling the impact of Omicron and emerging variants on SARS-CoV-2 transmission and public health burden, Commun. Med., 2 (2022), 93. https://doi.org/10.1038/s43856-022-00154-z doi: 10.1038/s43856-022-00154-z
    [152] H. M. Yang, L. P. Lombardi Junior, F. F. Morato Castro, A. Campos Yang, Evaluating the impacts of relaxation and mutation in the SARS-CoV-2 on the COVID-19 epidemic based on a mathematical model: A case study of São Paulo State (Brazil), Comput. Appl. Math., 40 (2021), 1–27. https://doi.org/10.1007/s40314-021-01661-w doi: 10.1007/s40314-021-01661-w
    [153] T. Britton, F. Ball, P. Trapman, A mathematical model reveals the influence of population heterogeneity on herd immunity to sars-cov-2, Science, 369 (2020), 846–849. https://doi.org/10.1126/science.abc6810 doi: 10.1126/science.abc6810
    [154] M. Farboodi, G. Jarosch, R. Shimer, Internal and external effects of social distancing in a pandemic, Journal of Economic Theory, 196 (2021), 105293. https://doi.org/10.1016/j.jet.2021.105293 doi: 10.1016/j.jet.2021.105293
    [155] S. E. Polykalas, K. G. Vlachos, G. N. Prezerakos, Using Google data for assessing the relation between Covid-19 spread and social distancing, In 2022 Global Information Infrastructure and Networking Symposium (GIIS), IEEE, 2022, pages 46–51. https://doi.org/10.1109/GIIS56506.2022.9936971
    [156] L. F.S. Scabini, L. C. Ribas, M. B. Neiva, A. G.B. Junior, A. J.F. Farfan, O. M. Bruno, Social interaction layers in complex networks for the dynamical epidemic modeling of COVID-19 in Brazil, Phys. A Statist. Mechan. Appl., 564 (2021), 125498. https://doi.org/10.1016/j.physa.2020.125498 doi: 10.1016/j.physa.2020.125498
    [157] M. Battegay, R. Kuehl, S. Tschudin-Sutter, H. H. Hirsch, A. F. Widmer, R. A. Neher, 2019-novel coronavirus (2019-nCoV): Estimating the case fatality rate-a word of caution, Swiss medical weekly, 150 (2020), w20203. https://doi.org/10.4414/smw.2020.20203 doi: 10.4414/smw.2020.20203
    [158] T. W. Russell, N. Golding, J. Hellewell, S. Abbott, L. Wright, C. AB. Pearson, et al., Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Med., 18 (2020), 332. https://doi.org/10.1186/s12916-020-01790-9 doi: 10.1186/s12916-020-01790-9
    [159] R. Subramanian, Q. He, M. Pascual. Quantifying asymptomatic infection and transmission of COVID-19 in New York City using observed cases, serology, and testing capacity. Proceed. Nat. Acad. Sci., 118 (2021), e2019716118. https://doi.org/10.1073/pnas.2019716118 doi: 10.1073/pnas.2019716118
    [160] P. Van Nguyen, T. L.D. Huynh, V. M. Ngo, H. H. Nguyen, The race against time to save human lives during the COVID-19 with vaccines: Global evidence, Evaluat. Rev., 46 (2022), 709–724. https://doi.org/10.1177/0193841X221085352 doi: 10.1177/0193841X221085352
    [161] B. Jahn, G. Sroczynski, M. Bicher, C. Rippinger, N. Mühlberger, J. Santamaria, et al., Targeted COVID-19 vaccination (TAV-COVID) considering limited vaccination capacities—An agent-based modeling evaluation, Vaccines, 9 (2021), 434. https://doi.org/10.3390/vaccines9050434 doi: 10.3390/vaccines9050434
    [162] J. R. Goldstein, T. Cassidy, K. W. Wachter, Vaccinating the oldest against COVID-19 saves both the most lives and most years of life, Proceed. Nat. Acad. Sci., 118 (2021). https://doi.org/10.1073/pnas.2026322118 doi: 10.1073/pnas.2026322118
    [163] H. P. I Arolas, E. Acosta, M. Myrskylä, Optimal vaccination age varies across countries, Proceed. Nat. Acad. Sci., 118 (2021). https://doi.org/10.1073/pnas.2105987118 doi: 10.1073/pnas.2105987118
    [164] G. C. González-Parra, D. F. Aranda, B. Chen-Charpentier, M. Díaz-Rodríguez, J. E. Castellanos, Mathematical modeling and characterization of the spread of Chikungunya in Colombia, Math. Comput. Appl., 24 (2019), 9. https://doi.org/10.3390/mca24010006 doi: 10.3390/mca24010006
    [165] I. Holmdahl, C. Buckee, Wrong but useful- what COVID-19 epidemiologic models can and cannot tell us. New England J. Med., (2020). https://doi.org/10.1056/NEJMp2016822 doi: 10.1056/NEJMp2016822
    [166] N. P. Jewell, J. A. Lewnard, B. L. Jewell, Caution warranted: using the Institute for Health Metrics and Evaluation model for predicting the course of the COVID-19 pandemic, (2020). https://doi.org/10.7326/M20-1565
    [167] T. Kuniya. Prediction of the epidemic peak of coronavirus disease in Japan, 2020. J. Clin. Med., 9 (2020), 789. https://doi.org/10.3390/jcm9030789 doi: 10.3390/jcm9030789
    [168] W. C. Roda, M. B. Varughese, D. Han, M. Y. Li. Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Disease Model., (2020). https://doi.org/10.1016/j.idm.2020.03.001 doi: 10.1016/j.idm.2020.03.001
    [169] M. Sperrin, S. W. Grant, N. Peek, Prediction models for diagnosis and prognosis in Covid-19, BMJ, 369 (2020). https://doi.org/10.1136/bmj.m1464 doi: 10.1136/bmj.m1464
    [170] S. Contreras, H. A. Villavicencio, D. Medina-Ortiz, C. P. Saavedra, A. Olivera-Nappa, Real-time estimation of $R_t$ for supporting public-health policies against COVID-19, Front. Public Health, 8 (2020). https://doi.org/10.3389/fpubh.2020.556689 doi: 10.3389/fpubh.2020.556689
    [171] S. Mandal, T. Bhatnagar, N. Arinaminpathy, A. Agarwal, A. Chowdhury, M. Murhekar, et al., Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India: A mathematical model-based approach, Indian J. Med. Res., 151 (2020), 190. https://doi.org/10.4103/ijmr.IJMR50420 doi: 10.4103/ijmr.IJMR50420
    [172] L. Zenk, G. Steiner, M. Pina e Cunha, M. D. Laubichler, M. Bertau, M. J. Kainz, et al., Fast response to superspreading: Uncertainty and complexity in the context of COVID-19, Int. J. Environ. Res. Public Health, 17 (2020), 7884. https://doi.org/10.3390/ijerph17217884 doi: 10.3390/ijerph17217884
    [173] S. R. Mehta, D. M. Smith, C. Boukadida, A. Chaillon. Comparative dynamics of Delta and Omicron SARS-CoV-2 variants across and between California and Mexico, Viruses, 14 (2022), 1494. https://doi.org/10.3390/v14071494 doi: 10.3390/v14071494
    [174] E. Shim, Projecting the impact of SARS-CoV-2 variants and the vaccination program on the fourth wave of the COVID-19 pandemic in South Korea, Int. J. Environ. Res. Public Health, 18 (2021), 7578. https://doi.org/10.3390/ijerph18147578 doi: 10.3390/ijerph18147578
    [175] D. He, S. Zhao, Q. Lin, Z. Zhuang, P. Cao, M. H. Wang, et al., The relative transmissibility of asymptomatic covid-19 infections among close contacts, Int. J. Infect. Diseases, 94 (2020), 145–147. https://doi.org/10.1016/j.ijid.2020.04.034 doi: 10.1016/j.ijid.2020.04.034
    [176] I. Korolev, Identification and estimation of the SEIRD epidemic model for COVID-19, J. Econom., 220 (2001), 63–85. https://doi.org/10.1016/j.jeconom.2020.07.038 doi: 10.1016/j.jeconom.2020.07.038
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2611) PDF downloads(206) Cited by(9)

Article outline

Figures and Tables

Figures(11)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog