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Abstract: In this paper, we study the global stability and persistence of a microorganism flocculation
model with infinite delay. First, we make a complete theoretical analysis on the local stability of the
boundary equilibrium (microorganism-free equilibrium) and the positive equilibrium (microorganism
co-existent equilibrium), and give a sufficient condition for the global stability of the boundary equi-
librium (applicable to the forward bifurcation and the backward bifurcation). Then, for the persistence
of the model, we present an explicit estimate of the eventual lower bound of any positive solution
for which only the parameter threshold R0 > 1 is required. The obtained results extend some of the
conclusions of the existing literatures on the case of discrete time delay.
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1. Introduction

In the research of microbial growth dynamics, a rich variety of differential equation models and
theoretical research of chemostats have been greatly developed, and fruitful research results have been
achieved [1–4]. Flocculants are widely used in the sedimentation/coagulation/collection of microor-
ganisms in petri dishes/reaction tanks, such as the removal of harmful microorganisms in polluted wa-
ter and the development and utilization of beneficial microorganisms (such as microbial algae health
food and algae-based microbial clean energy). Therefore, the research and development of floccu-
lants (organic, inorganic, microbial, etc.) with the advantages of high efficiency, no pollution and low
cost remains one of the important research topics in the field of microbial application technology. In
literature [5–9], a dynamics model of microbial continuous culture with flocculation, time delay and
different functional reaction functions was established based on the classical chemostat model, and the
existence, local and global stability of the forward and backward bifurcation of the equilibrium, as
well as the consistent persistence of the model were studied by constructing an appropriate Lyapunov
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functional and other methods.
Based on the microorganism flocculation models in [6–8] with discrete time delays, in this paper,

we intend to further consider the following microorganism flocculation model with infinite delay:
n′(t) = Dn0 − Dn(t) − h1n(t)x(t),

x′(t) = h
∫ ∞

0
e−µθ f (θ)n(t − θ)x(t − θ)dθ − Dx(t) − h2x(t)s(t),

s′(t) = Ds0 − Ds(t) − h3x(t)s(t).

(1.1)

Here, n(t), x(t) and s(t) represent the concentrations of nutrients, microorganisms and flocculant at
time t, respectively. The positive constants n0 and s0 indicate the input concentrations of nutrients and
flocculant, respectively. The positive constant D indicates the outflow and inflow rate of the substances
in the chemostat. The non-negative constants h1 and h indicate the consumption ratio of nutrients
and the growth ratio of microorganisms, respectively. The non-negative constants h2 and h3 indicate
the flocculating ratio of microorganisms and the consumption ratio of flocculant, respectively. The
distribution function f (θ) is non-negative and satisfies

∫ ∞
0

f (θ)dθ = 1. µ is a non-negative constant,
and e−µθ is the survival rate of microorganisms.

As we know, infinite delay was introduced early into dynamics models with a single nutrient and
single-species microorganism growth problems. It can describe the cumulative cycle of microbial
decomposition into nutrients (from an early time in the past) and the accumulated time it takes for nu-
trients to be absorbed/stored by microorganisms until they are converted into actual biomass [10–16].
Further, its use can be extended to the models with multiple microorganisms, substitutable nutrients,
non-substitutable nutrients (fully complementary nutrients), etc. [17–19]. As pointed out in [15], the
differential equations with distributed infinite delay have been successfully applied in biological model-
ing since the work of Volterra, and they are regarded to be more realistic than the differential equations
with discrete and finite delay.

Similarly, infinite delay is also widely used to characterize the dynamic modeling of practical issues
in many fields, such as population growth [20–24], infectious diseases in population [25, 26], virus
infection and immunity [27–29].

The main purpose of this paper is to analyze the local and global stability of the boundary equilib-
rium (microorganism-free equilibrium) and the positive equilibrium (microorganism co-existent equi-
librium) of model (1.1) and provide the corresponding criteria by using the stability theory of infinite
delay differential equations and other related methods. At the same time, for the persistence of model
(1.1), an explicit estimate of the eventual lower bound of its arbitrary positive solutions is given.

2. Dissipativeness and classification of the equilibria

For simplicity, we define the following parameter transformation:
n = n0N, x = X, s = s0S , t = t̄

D , θ = θ̄
D , µ = µ̄D, r = hn0

D2 , h̄1 = h1
D , h̄2 = h2 s0

D , h̄3 = h3
D .

The dimensionless system for (1.1) is given by
N′(t) = 1 − N(t) − h1N(t)X(t),

X′(t) = r
∫ ∞

0
e−µθ f (θ)N(t − θ)X(t − θ)dθ − X(t) − h2X(t)S (t),

S ′(t) = 1 − S (t) − h3X(t)S (t).

(2.1)
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Here, for the convenience of writing, the corresponding symbols are still used after the “overline” is
removed. We assume that

∫ ∞
0

e−µθ f (θ)dθ = q ≤ 1 and
∫ ∞

0
θe−µθ f (θ)dθ < ∞.

According to [23, 30–34], the phase space of model (2.1) can be taken as

C =
{
φ ∈ C((−∞, 0],R3) : φ(θ)eαθ is uniformly continuous, for θ ∈ (−∞, 0], ‖φ‖ < ∞

}
,

where α is a positive constant; the norm ‖φ‖ = supθ≤0 |φ(θ)|eαθ. The nonnegative cone of C is C+ =

{φ ∈ C : φ(θ) ≥ 0, θ ∈ (−∞, 0]}.
For φ ∈ C+, we define φt ∈ C+, φt(θ) = φ(t + θ), θ ∈ (−∞, 0].
Considering the biological significance of model (2.1), for any initial function φ = (φ1, φ2, φ3)T , we

restrict φ = (φ1, φ2, φ3)T ∈ BC+ ⊂ C+, where

BC+ =
{
φ ∈ C((−∞, 0],R3) : φ(θ) is nonnegative and bounded, for θ ∈ (−∞, 0]

}
.

Thus, we have the following theorem.

Theorem 2.1. For φ = (φ1, φ2, φ3)T ∈ BC+, the solution of model (2.1) with the initial condition
(N(θ), X(θ), S (θ))T = (φ1(θ), φ2(θ), φ3(θ))T (θ ∈ (−∞, 0]) is nonnegative and unique, and it satisfies
N(t) > 0(t > 0), X(t) ≥ 0(t ≥ 0), S (t) > 0(t > 0), lim sup

t→∞
N(t) ≤ 1, lim sup

t→∞
X(t) ≤ ξ, lim sup

t→∞
S (t) ≤ 1,

where ξ is a positive constant not depending on the initial function.

Proof. From the first and third equations in model (2.1), we can easily get lim sup
t→∞

N(t) ≤ 1 and

lim sup
t→∞

S (t) ≤ 1. Define

V(φ) =
rq
h1
φ1(0) + φ2(0) + φ3(0) + r

∫ ∞

0
e−µθ f (θ)

∫ 0

−θ

φ1(u)φ2(u)dudθ.

Here, the convergence of
∫ ∞

0
θe−µθ f (θ)dθ should be noticed. Then, for t ≥ 0, the derivative of V along

any solution of model (2.1) is

V ′(φ)|(2.1) =
rq
h1

N′(t) + X′(t) + S ′(t) + r
[∫ ∞

0
e−µθ f (θ)

∫ t

t−θ
N(u)X(u)dudθ

]′
=

rq
h1

[1 − N(t) − h1N(t)X(t)] +

[
r
∫ ∞

0
e−µθ f (θ)N(t − θ)X(t − θ)dθ − X(t) − h2X(t)S (t)

]
+[1 − S (t) − h3X(t)S (t)] + r

∫ ∞

0
e−µθ f (θ)[N(t)X(t) − N(t − θ)X(t − θ)]dθ

=
rq
h1

+ 1 −
rq
h1

N(t) − X(t) − S (t) − h2X(t)S (t) − h3X(t)S (t)

≤
rq
h1

+ 1 −
[
rq
h1

N(t) + X(t) + S (t)
]
.

From Theorem A in [35], we obtain that the solution of model (2.1) is ultimately uniformly bounded.
Furthermore, there is a positive constant ξ independent of the initial function such that lim sup

t→∞
X(t) ≤ ξ.
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According to the discussion in [5, 6], the equilibria of model (2.1) can be classified as follows.
The model (2.1) always has a boundary equilibrium (microorganism-free equilibrium) E0 =

(1, 0, 1)T .
To consider the existence of the positive equilibria (microorganism co-existent equilibrium) for

X > 0, we consider the equation of the variable X:

h1h3X2 + (b − aR0)X + h2(1 − R0) = 0, (2.2)

where R0 =
rq−1

h2
, a = h2h3, b = h1h2 + h1. If rq ≤ 1(R0 ≤ 0), (2.1) has no positive equilibria. If rq > 1,

the following conclusion holds:
1) a ≤ b. If R0 > 1, there exists a unique positive equilibrium E∗1 = (N∗1 , X

∗
1, S

∗
1)T . If R0 ≤ 1, there

are no positive equilibria.
2) a > b. If R0 > 1, there exists a unique positive equilibrium E∗1 = (N1

∗, X∗1, S
∗
1)T .

If R0 < 1, let F(z) = a2
[
(z − b

a )2 + 4h1
a (z − 1)

]
. By F(z) = 0, we have

z1 =
b − 2h1

a
+

2
a

√
h2

1 + (a − b)h1, z2 =
b − 2h1

a
−

2
a

√
h2

1 + (a − b)h1,

and we know that z1 satisfies b
a < z1 ≡ ω < 1.

If R0 = ω, there exists a unique positive equilibrium E∗ω = (N∗ω, X
∗
ω, S

∗
ω)T .

If ω < R0 < 1, there exist two positive equilibria E∗1 = (N∗1 , X
∗
1, S

∗
1)T , E∗2 = (N∗2 , X

∗
2, S

∗
2)T .

If R0 < ω, there are no positive equilibria.

3. Stability of the boundary equilibrium

This section mainly considers the local and global stability of the boundary equilibrium E0.

3.1. Local stability of the boundary equilibrium

The linearized system of model (2.1) at any equilibrium is

N′(t) = − (1 + h1X̄)N(t) − h1N̄X(t),

X′(t) =r
∫ ∞

0
e−µθ f (θ)X̄N(t − θ)dθ + r

∫ ∞

0
e−µθ f (θ)N̄X(t − θ)dθ

− (1 + h2S̄ )X(t) − h2X̄S (t),
S ′(t) = − h3S̄ X(t) − (1 + h3X̄)S (t).

(3.1)

Then, we have the following theorem.

Theorem 3.1. If R0 < 1, then the boundary equilibrium E0 is locally asymptotically stable. If R0 > 1,
then the boundary equilibrium E0 is unstable.

Proof. The characteristic equation at the boundary equilibrium E0 is

(λ + 1)2
(
λ + 1 + h2 − r

∫ ∞

0
e−µθ f (θ)e−λθdθ

)
= 0.
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There are always eigenvalues λ1,2 = −1 < 0. Consider the following transcendental equation:

ψ(λ) = λ + 1 + h2 − r
∫ ∞

0
e−µθ f (θ)e−λθdθ = 0. (3.2)

Let us assume that Eq (3.2) has a root λwith a non-negative real part, i.e., Reλ ≥ 0; this then implies
that

rq = r
∫ ∞

0
e−µθ f (θ)dθ ≥

∣∣∣∣∣r ∫ ∞

0
e−µθ f (θ)e−λθdθ

∣∣∣∣∣ = |λ + 1 + h2| ≥ 1 + h2. (3.3)

Obviously, the inequality Eq (3.3) contradicts R0 < 1. Therefore, all roots of Eq (3.2) have negative
real parts when R0 < 1.

If R0 > 1, we see that ψ(0) = h2(1 − R0) < 0. For λ ≥ 0, we have

ψ(λ) ≥ λ + 1 + h2 − r
∫ ∞

0
e−µθ f (θ)dθ = λ + 1 + h2 − rq.

Therefore, ψ(λ) → +∞ as λ → +∞. According to the intermediate value theorem of continuous
functions, the equation ψ(λ) = 0 has at least one positive eigenvalue λ.

3.2. Global stability of the boundary equilibrium

Theorem 3.2. If R0 <
1

1+h3ξ
(< 1), the boundary equilibrium E0 is globally asymptotically stable.

Proof. Noting Theorem 3.1, we only need to prove that the boundary equilibrium E0 is globally attrac-
tive.

For the arbitrary bounded solution of model (2.1), we consider the following differentiable function

Ψ0(t) = q(N(t) − 1 − ln N(t)) +
h1

r
X(t) + h1

∫ ∞

0
e−µθ f (θ)

∫ t

t−θ
N(s)X(s)dsdθ, f or t ≥ 0.

Since lim sup
t→∞

X(t) ≤ ξ, then the third equation from model (2.1) yields lim inf
t→∞

S (t) ≥ 1
1+h3ξ

. There

exists a sufficiently large t1 > 0; we have S (t) > 1
1+h3ξ

− ε > 0 for t > t1. Let R0 <
1

1+h3ξ
− ε > 0 for

sufficiently small ε > 0. Therefore, for t > t1,

Ψ′0(t) = q
(
2 −

1
N(t)

− N(t)
)

+
h1h2

r
(R0 − S (t))X(t)

≤ q
(
2 −

1
N(t)

− N(t)
)

+
h1h2

r

(
R0 −

1
1 + h3ξ

+ ε

)
X(t).

Integration at both sides of the above inequality yields

Ψ0(t) −
∫ t

t1

(
q(2 −

1
N(u)

− N(u)) +
h1h2

r
(R0 −

1
1 + h3ξ

+ ε)X(u)
)

du ≤ Ψ0(t1) < +∞.

We can obtain X(t) as integrable on [t1,+∞). In addition, considering the initial function φ =

(φ1, φ2, φ3)T ∈ BC+ and the boundedness of the solution, we have that the derivative function X′(t) is
bounded on [t1,+∞) from the second equation of model (2.1). Therefore, X(t) is uniformly continuous
on [t1,+∞). Using the familiar Barbalet’s lemma, we have lim

t→∞
X(t) = 0. Further, from the first and

third equations of model (2.1), we can get lim
t→∞

N(t) = lim
t→∞

S (t) = 1.
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4. Stability of the positive equilibria

For the local asymptotic stability of the positive equilibrium E∗1, there is the following theorem.

Theorem 4.1. The following conclusions hold:
1) Let a ≤ b (the forward bifurcation). If R0 > 1, then the positive equilibrium E∗1 is locally asymptoti-
cally stable.
2) Let a > b (the backward bifurcation).
(i) If R0 > 1, then the positive equilibrium E∗1 is locally asymptotically stable.
(ii) If ω < R0 < 1, then the positive equilibrium E∗1 is locally asymptotically stable and the positive
equilibrium E∗2 is unstable.
(iii) If R0 = ω, then the positive equilibrium E∗ω is linearly stable.

Proof. The characteristic equation of the linearized system at any positive equilibrium E∗ is

J(λ) =

∣∣∣∣∣∣∣∣∣
λ + 1 + h1X∗ h1N∗ 0

−rX∗
∫ ∞

0
e−µθ f (θ)e−λθdθ λ + 1 + h2S ∗ − rN∗

∫ ∞
0

e−µθ f (θ)e−λθdθ h2X∗

0 h3S ∗ λ + 1 + h3X∗

∣∣∣∣∣∣∣∣∣
= (λ + 1 + h1X∗)

[(
λ + 1 + h2S ∗ − rN∗

∫ ∞

0
e−µθ f (θ)e−λθdθ

)
(λ + 1 + h3X∗) − h2X∗h3S ∗

]
+rX∗h1N∗(λ + 1 + h3X∗)

∫ ∞

0
e−µθ f (θ)e−λθdθ

= (λ + 1 + h1X∗)(λ + 1 + h2S ∗)(λ + 1 + h3X∗) − h2X∗h3S ∗(λ + 1 + h1X∗)

+rX∗h1N∗(λ + 1 + h3X∗)
∫ ∞

0
e−µθ f (θ)e−λθdθ

−rN∗(λ + 1 + h1X∗)(λ + 1 + h3X∗)
∫ ∞

0
e−µθ f (θ)e−λθdθ

= (λ + 1 + h1X∗)(λ + 1)(λ + 1 + h2S ∗ + h3X∗) − rN∗(λ + 1 + h3X∗)(λ + 1)
∫ ∞

0
e−µθ f (θ)e−λθdθ

≡ (λ + 1)J̃(λ),

where

J̃(λ) = (λ + 1 + h1X∗)(λ + 1 + h2S ∗ + h3X∗) − rN∗(λ + 1 + h3X∗)
∫ ∞

0
e−µθ f (θ)e−λθdθ.

First, we consider the local asymptotic stability of E∗1. Here, we notice the equations N∗ = 1
1+h1X∗ ,

S ∗ = 1
1+h3X∗ and 1 + h2S ∗ = rqN∗. Similar to the discussion of Theorem 3.2 in [5], it is easy to obtain

J(0) = J̃(0) = N∗X∗H(X∗), where H(X∗) = h2
1h3X∗2 + 2h1h3X∗ + h3 + rqh1 − rqh3 > 0. Therefore,

J(λ) = 0 does not have zero root λ = 0.
Rewrite the equation J̃(λ) = 0 as

(λ + 1 + h1X∗)(λ + 1 + h2S ∗ + h3X∗) = rN∗(λ + 1 + h3X∗)
∫ ∞

0
e−µθ f (θ)e−λθdθ. (4.1)
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Let us assume that Eq (4.1) has roots λ = x± iy (x ≥ 0, y ≥ 0 and |x|+ |y| > 0). Taking the modulus
on both sides of (4.1), it follows that

F(x, y) ≡ |λ + 1 + h1X∗|2|λ + 1 + h2S ∗ + h3X∗|2 − (rqN∗)2|λ + 1 + h3X∗|2 ≤ 0.

On the other hand, we have

F(x, y) = |λ + 1 + h1X∗|2|λ + rqN∗ + h3X∗|2 − (rqN∗)2|λ + 1 + h3X∗|2

= |x + iy + 1 + h1X∗|2|x + iy + rqN∗ + h3X∗|2 − (rqN∗)2|x + iy + 1 + h3X∗|2

= [(x + 1 + h1X∗)2 + y2][(x + rqN∗ + h3X∗)2 + y2] − (rqN∗)2[(x + 1 + h3X∗)2 + y2]
= [(x + 1 + h1X∗)2(x + rqN∗ + h3X∗)2 − (rqN∗)2(x + 1 + h3X∗)2]

+y2[(x + 1 + h1X∗)2 + (x + rqN∗ + h3X∗)2 + y2 − (rqN∗)2]
≥ [(x + 1 + h1X∗)(x + rqN∗ + h3X∗) + (rqN∗)(x + 1 + h3X∗)]G(x),

where G(x) = (x + 1 + h1X∗)(x + rqN∗ + h3X∗) − (rqN∗)(x + 1 + h3X∗). For x > 0, it has from
G′(x) = 2x + 1 + h1X∗ + h3X∗ > 0 that G(x) ≥ G(0) = N∗X∗H(X∗) > 0. Therefore, F(x, y) > 0 for
x ≥ 0, y ≥ 0 and |x|+ |y| > 0. Clearly, this is a contradiction. Thus, it is proved that all roots of Eq (4.1)
have negative real parts.

Next, we consider the instability of E∗2. Completely similar to the discussion of Theorem 3.3 in [5],
at the positive equilibrium E∗2, J̃(λ) satisfies J̃(0) < 0.

Then for λ ≥ 0,

J̃(λ) ≥ λ2 + (1 + h1X∗ + h3X∗)λ + (1 + h1X∗)(1 + h2S ∗ + h3X∗) − rqN∗(1 + h3X∗).

Therefore, J̃(λ) → +∞ as λ → +∞. Furthermore, it can be easily obtained that the equation
J(λ) = 0 has at least one positive eigenvalue, implying that the positive equilibrium E∗2 is unstable.

Finally, for the positive equilibrium E∗ω, completely similar to the discussion of Theorem 3.3 in [5],
one obtains that the equation J̃(λ) = 0 has a single root λ = 0, and all other roots have negative real
parts. Therefore, the positive equilibrium E∗ω is linearly stable.

5. Permanence of the model

For the initial function φ = (φ1, φ2, φ3)T ∈ BC+ and φ1 ≤ 1 and φ3 ≤ 1, it is not difficult to show
that the solution (N(t), X(t), S (t))T of model (2.1) satisfies N(t) ≤ 1 and S (t) ≤ 1 for t ≥ 0. Therefore,
in the discussion of persistence, the initial function φ = (φ1, φ2, φ3)T ∈ BC+ can be defined to satisfy
φ1 ≤ 1 and φ3 ≤ 1.

Theorem 5.1. If R0 > 1, for φ = (φ1, φ2, φ3)T ∈ BC+, φ1 ≤ 1, φ3 ≤ 1 and φ2(0) > 0, model (2.1) is
uniformly persistent and the solution (N(t), X(t), S (t))T of model (2.1) satisfies

lim inf
t→∞

N(t) ≥
1

1 + h1ξ
≡ υ1, lim inf

t→∞
X(t) ≥ X1e−(1+h2)(T0+τ1) ≡ υ2, lim inf

t→∞
S (t) ≥

1
1 + h3ξ

≡ υ3,

where τ1 is a positive constant, and

X1 =
σ

h1(1 + h2)
, T0 = −

1 + h2

1 + h2 + σ
ln

qr − 1 − h2 − σ

qr
, σ ∈ (0, qr − 1 − h2).

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10815–10827.
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A =
1 + h2

1 + h2 + σ
, A +

[
1

2(1 + h1ξ)
− A

]
e−

T0
A ≡ ρ

(
1 > ρ > A − Ae−

T0
A =

1 + h2

qr

)
,

0 < ε < min
{

q,
qrρ − (1 + h2)

rρ

}
,

∫ τ1

0
e−µθ f (θ)dθ > q − ε (> 0).

Proof. Let (N(t), X(t), S (t))T (t ≥ 0) be a solution of model (2.1). By the conclusion of Theorem
2.1, we have lim sup

t→∞
X(t) ≤ ξ; then, it follows from the first and third equations of model (2.1) that

lim inf
t→∞

N(t) ≥ υ1, lim inf
t→∞

S (t) ≥ υ3.
For t ≥ 0, we define auxiliary functions V(t):

V(t) = X(t) + r
∫ ∞

0
e−µθ f (θ)

∫ t

t−θ
N(s)X(s)dsdθ.

Noticing that the boundedness of the solution (N(t), X(t), S (t))T (t ≥ 0) and
∫ ∞

0
θe−µθ f (θ)dθ < ∞,

we obtain that the function V(t) is bounded and continuously differentiable. For t ≥ 0, we have

V ′(t) = (qrN(t) − 1 − h2S (t))X(t) ≥ (qrN(t) − 1 − h2)X(t),

S (t) ≤ 1 (t ≥ 0) is used here.
There exists a sufficiently large T > 0 such that N(t) ≥ 1

2(1+h1ξ)
for t ≥ T .

For every t0 ≥ T > 0, it is shown below that the inequality X(t) ≤ X1 (t ≥ t0) cannot hold.
If not, then there exists some t0 ≥ T such that X(t) ≤ X1 for t ≥ t0. From the first equation of model

(2.1), we have N′(t) ≥ 1− (1+h1X1)N(t) = 1− 1
A N(t) for t ≥ t0. Noticing that 1

2(1+h1ξ)
−A < 0, therefore,

for t ≥ t0 + T0, we obtain

N(t) ≥ A + (N(t0) − A)e−
t−t0

A ≥ A +

[
1

2(1 + h1ξ)
− A

]
e−

t−t0
A

≥ A +

[
1

2(1 + h1ξ)
− A

]
e−

T0
A = ρ.

Then, for t ≥ t0 + T0, we have V ′(t) ≥ (qrρ − 1 − h2)X(t).
It follows from the conditions in Theorem 5.1 that r

∫ τ1

0
e−µθ f (θ)dθ > r(q − ε) > rρ(q − ε) > 1 + h2.

Let Xm = min
−τ1≤θ≤0

X(t0 + T0 + τ1 + θ); the following proof shows that X(t) ≥ Xm for all t ≥ t0 + T0.

If not, then there exists a T1 ≥ 0 such that X(t) ≥ Xm for t0 +T0 ≤ t ≤ t0 +T0 +τ1 +T1 ≡ t̄, X(t̄) = Xm

and X′(t̄) ≤ 0. It follows immediately from the second equation of model (2.1) that

X′(t̄) = r
∫ τ1+T1

0
e−µθ f (θ)N(t̄ − θ)X(t̄ − θ)dθ + r

∫ ∞

τ1+T1

e−µθ f (θ)N(t̄ − θ)X(t̄ − θ)dθ

−X(t̄) − h2X(t̄)S (t̄)

≥ r
∫ τ1+T1

0
e−µθ f (θ)N(t̄ − θ)X(t̄ − θ)dθ − X(t̄) − h2X(t̄)S (t̄)

≥ rρXm

∫ τ1+T1

0
e−µθ f (θ)dθ − Xm − h2Xm

> [rρ(q − ε) − 1 − h2]Xm > 0;
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S (t̄) ≤ 1 is used here. Clearly, this is a contradiction. It indicates that X(t) ≥ Xm for all t ≥ t0 + T0.
Thus, for t ≥ t0 + T0, we have

V ′(t) ≥ (qrρ − 1 − h2)X(t) ≥ (qrρ − 1 − h2)Xm > 0.

Then, V(t)→ +∞ as t → +∞, this is a contradiction with the boundedness of V(t).
The following two cases are discussed.
Case (I) The inequality X(t) ≥ X1 holds for all large t, implying that lim inf

t→∞
X(t) ≥ X1 ≥ υ2.

Case (II) The function X(t) oscillates infinitely above and below X = X1 for all large enough t. At
this time, we only consider interval [t1, t2], where t2 > t1 ≥ T , X(t1) = X1, X(t2) = X1, X(t) < X1

(t1 < t < t2).
If t2 − t1 ≤ T0 + τ1, it follows from the second equation of model (2.1) that X′(t) ≥ −(1 + h2)X(t) for

t ∈ [t1, t2]. Therefore, by integrating, we have

X(t) ≥ X1e−(1+h2)(t−t1) ≥ X1e−(1+h2)(T0+τ1) = υ2 for t ∈ [t1, t2].

If t2 − t1 > T0 + τ1, this case is exactly similar to the derivation of Case (I), which make it easy to
obtain X(t) ≥ υ2 for t ∈ [t1, t1 + T0 + τ1].

It is further proved that there is still X(t) ≥ υ2 for t ∈ [t1 + T0 + τ1, t2].
If this were not true, then there exists a T2 ≥ 0 such that X(t) ≥ υ2 for t1 ≤ t ≤ t1 + T0 + τ1 + T2 ≡ t̂,

X(t̂) = υ2 and X′(t̂) ≤ 0. Similarly, it also follows from the second equation of model (2.1) that

X′(t̂) = r
∫ τ1+T2

0
e−µθ f (θ)N(t̂ − θ)X(t̂ − θ)dθ + r

∫ ∞

τ1+T2

e−µθ f (θ)N(t̂ − θ)X(t̂ − θ)dθ

−X(t̂) − h2X(t̂)S (t̂)

≥ r
∫ τ1+T2

0
e−µθ f (θ)N(t̂ − θ)X(t̂ − θ)dθ − X(t̂) − h2X(t̂)S (t̂)

≥ rρυ2

∫ τ1+T2

0
e−µθ f (θ)dθ − (1 + h2)υ2

> [rρ(q − ε) − 1 − h2]υ2 > 0,

S (t̂) ≤ 1 is also used here. Therefore, a contradiction is obtained. This shows that for t ∈ [t1, t2],
X(t) ≥ υ2 always holds. Since the interval [t1, t2] is arbitrarily chosen, this proves that for all sufficiently
large t , there must be X(t) ≥ υ2. Thus, it follows that lim inf

t→∞
X(t) ≥ υ2.

6. Conclusions

In this paper, we have obtained the dissipation of the solution and the local asymptotic stability
of the equilibrium as well as the uniform persistence of model (2.1) with infinite delay through fine
analysis on the distribution of the roots of the characteristic equations in the complex plane and the
asymptotic properties of the solutions, combined with the construction of appropriate Lyapunov func-
tionals. Furthermore, a sufficient condition for the global stability of the boundary equilibrium is
given. In particular, the conclusion of uniform persistence suggests that microorganism flocculation
and collection are sustainable as long as the threshold parameter R0 > 1. Also, the explicit estimation
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expressions for the eventual lower bound of the evolution of biomass (nutrient-N(t), microorganism-
X(t), flocculant-S (t)) with time are given. These results further extend the corresponding conclusions
in [5, 6].

However, it should be pointed out that (2.1) is an infinite time-delay system, and the information
of the initial function is always stored in the time-delay term, which makes it more difficult to obtain
an explicit expression of ξ in Theorem 2.1 than in the case of bounded time-delay systems, and we
will leave this issue for further discussion. Second, the sufficient condition R0 < 1

1+h3ξ
(< 1) given

in Theorem 3.2 for the global stability of the boundary equilibrium (microorganism-free equilibrium)
E0 is also conservative, at least for the case of the forward bifurcation. In addition, we have not
considered the global stability of the positive equilibrium E∗ (microorganism co-existent equilibrium)
of the model (2.1), since new Lyapunov functionals with infinite delay may need to be constructed
(see, for example, [10–15]). Furthermore, we see from Theorem 5.1 that the parameter ξ in Theorem
2.1 plays an important role in the values of the parameters υ1, υ2 and υ3.

Finally, similar to [16], let us choose the following weak kernel and strong kernel:

f (θ) = αe−αθ ≡ fw(θ), f (θ) = α2θe−αθ ≡ fs(θ), θ ≥ 0, α > 0.

The corresponding parameters q can be easily calculated as

qw =

∫ ∞

0
e−µθ fw(θ)dθ =

α

α + µ
, qs =

∫ ∞

0
e−µθ fs(θ)dθ =

α2

(α + µ)2 .

Therefore, the condition “
∫ τ1

0
e−µθ f (θ)dθ > q − ε” in Theorem 5.1 becomes the following simpler

form:

(weak kernel)
α

α + µ
e−(µ+α)τ1 < ε, (strong kernel)

α2

µ + α
(τ1 +

1
µ + α

)e−(µ+α)τ1 < ε.

Especially, consider when (2.1) degenerates to the following one with bounded time delay:
N′(t) = 1 − N(t) − h1N(t)X(t),

X′(t) = r
∫ τ

0
e−µθ f (θ)N(t − θ)X(t − θ)dθ − X(t) − h2X(t)S (t),

S ′(t) = 1 − S (t) − h3X(t)S (t),

where τ ≥ 0 is a constant. Then similar to [5, 6], for t ≥ 0, let us consider the following differentiable
function:

G(t) =
r
h1

∫ τ

0
e−µθ f (θ)N(t − θ)dθ + X(t).

It follows that for t ≥ τ,

G′(t) =
r
h1

∫ τ

0
e−µθ f (θ)dθ −

r
h1

∫ τ

0
e−µθ f (θ)N(t − θ)dθ − X(t) − h2X(t)S (t)

≤
r
h1

∫ τ

0
e−µθ f (θ)dθ −G(t).

Thus, it has

lim
t→+∞

X(t) ≤ lim
t→+∞

G(t) ≤
r
h1

∫ τ

0
e−µθ f (θ)dθ ≡ ξ.
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