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Abstract: For the feature selection of network intrusion detection, the issue of numerous redundant
features arises, posing challenges in enhancing detection accuracy and adversely affecting overall
performance to some extent. Artificial rabbits optimization (ARO) is capable of reducing redundant
features and can be applied for the feature selection of network intrusion detection. The ARO exhibits
a slow iteration speed in the exploration phase of the population and is prone to an iterative stagnation
condition in the exploitation phase, which hinders its ability to deliver outstanding performance in the
aforementioned problems. First, to enhance the global exploration capabilities further, the thinking of
ARO incorporates the mud ring feeding strategy from the bottlenose dolphin optimizer (BDO).
Simultaneously, for adjusting the exploration and exploitation phases, the ARO employs an adaptive
switching mechanism. Second, to avoid the original algorithm getting trapped in the local optimum
during the local exploitation phase, the levy flight strategy is adopted. Lastly, the dynamic lens-
imaging strategy is introduced to enhance population variety and facilitate escape from the local
optimum. Then, this paper proposes a modified ARO, namely LBARO, a hybrid algorithm that
combines BDO and ARO, for feature selection in the network intrusion detection model. The LBARO
is first empirically evaluated to comprehensively demonstrate the superiority of the proposed algorithm,
using 8 benchmark test functions and 4 UCI datasets. Subsequently, the LBARO is integrated into the
feature selection process of the network intrusion detection model for classification experimental
validation. This integration is validated utilizing the NSL-KDD, UNSW NB-15, and InSDN datasets,
respectively. Experimental results indicate that the proposed model based on LBARO successfully
reduces redundant characteristics while enhancing the classification capabilities of network
intrusion detection.
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1. Introduction

Undoubtedly, the current era of networking is characterized by novelty. The rapid expansion of
networks is giving rise to an unprecedented volume of data, contributing to heightened complexity in
terms of data dimensions and features. Within this extensive dataset, when there is a need to analyze
and detect specific data, the presence of numerous non-essential redundant features emerges. This
proliferation of redundant features intensifies the challenges in network intrusion detection, akin to a
pathological condition. As a consequence, a pivotal strategy for enhancing the efficacy and
performance of network intrusion detection involves the elimination of duplicate characteristics.
Network intrusion detection detects attack patterns by analyzing network traffic, with machine learning
algorithms such as artificial neural networks, naive Bayes, and decision trees being predominantly
utilized in current practices. Traditional machine learning methods are particularly valuable for solving
small-scale data and simple tasks, offering better interpretability. Novel deep learning methods exhibit
superior performance in handling large-scale data and complex tasks, albeit requiring more
computational resources. Given the immense volume of current network traffic, attempting to identify
the most suitable features through a systematic search is generally impractical due to the limitations of
direct computation in practice. Although evaluating all possible subsets is costly in practice, the
emergence of intelligent optimization algorithms provides a solution. Intelligent optimization
algorithms are classified into four categories: evolution-based algorithms, swarm intelligence-based
algorithms, physics-based algorithms, and human behavior-related algorithms. These algorithms can
approach the optimal solution of a problem, are simple to implement, and exhibit high flexibility. The
algorithms can be modified depending on the requirements of the problem to efficiently search the
space and avoid falling into local optimum. Hence, many feature selection methods utilize intelligent
optimization algorithms to mitigate increasing computational complexity, handle invalid or duplicate
features, and aid in analyzing data behavior, thereby reducing computational and storage costs [1-4].

In this context, numerous studies have been conducted, yielding a plethora of viable solutions.
These include traditional feature selection methods (such as relevance feature selection and information
gain) and population intelligence optimization algorithms (e.g., Harris hawk optimization (HHO) [5],
particle swarm optimization (PSO) [6], gray wolf optimization (GWO) [7], and whale optimization
algorithm (WOA) [8]), all aimed at addressing the feature problem in network intrusion detection.

Despite the establishment of a substantial number of intelligent optimization algorithms for
handling feature selection in network intrusion detection, there remains an optimization space in the
selection of these algorithms. While there are numerous outstanding options available, their outcomes
are not perfect [9].

Artificial rabbits optimization (ARO) [10], introduced by L. Wang et al. in 2022, is a novel
intelligent optimization algorithm. Its robust optimality-seeking ability makes it particularly well-
suited for addressing the feature selection challenges in network intrusion detection. When handling
large-dimensional data, ARO is prone to settling into the local optimum, leading to unsatisfactory
results. The bottlenose dolphin aptimizer (BDO) [11], introduced by A. Srivastava et al. in 2022, stands
out for its strong pre-probing ability and remarkable convergence speed.

Given the exceptional performance of ARO, scholars have extended its applicability to practical
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scenarios. To extend network life by reducing energy consumption rates, R. Ramalingam et al.
integrated ARO with WSNs, designing the energy efficient cluster formation based on the ARO [12].
Y. Wang et al. synergized the aquila optimizer (AO) with ARO, utilizing the hybrid algorithm to
address five industrial engineering design problems and photovoltaic model parameter identification
challenges [13]. Additionally, the ARO, introduced by D. Dangi et al., plays a crucial role in enhancing
the performance of robust random vector functional link networks (RRVFLN) by efficiently mitigating
hidden layer bias and optimizing the input weights of the RRVFLN model [14].

Furthermore, the research in network traffic intrusion detection aims to enhance detection
capabilities, striving for both strength and speed to yield superior results in practical applications [15].
Notably, H. Alazzam et al. introduced a feature selection method designed for an IDS. The suggested
method efficiently reduces the number of features required to construct a robust IDS, preserving a high
level of accuracy. Moreover, the proposed cosine similarity method exhibits superior convergence
speed compared to the standard sigmoid method [16]. Q. M. Alzubi et al. introduced a novel IDS
utilizing an enhanced hybrid algorithm that combines binary GWO and PSO. The system efficiently
employs a support vector machine for dataset classification and experimentally evaluates the
significant enhancement in intrusion detection accuracy using the NSL-KDD dataset [17]. A.
Alzagebah et al. employed a modified GWO, incorporating filter and wrapper approaches during the
initialization phase. The parameters of the extreme learning machine are subsequently fine-tuned using
the enhanced GWO. The final proposed model can minimize data dimensions and eliminate irrelevant
and noisy data, effectively enhancing the performance of the IDS [18]. M. Injadat et al. proposed a
multi-level optimization NIDS framework based on machine learning. The framework utilizes
oversampling techniques to determine the minimum suitable training sample size, investigates the
impact of various feature selection techniques, and employs hyperparameter optimization to enhance
performance. Final experiments demonstrate that the framework effectively reduces computational
complexity while maintaining detection performance [19]. J. Lee et al. proposed a deep sparse
autoencoder (DASE) for extracting and compressing important features, which was then combined
with random forest (RF) to form the DASE-RF model. Experimental comparisons demonstrate that
the model significantly enhances both detection speed and performance [20]. D. Mauro et al. focus on
feature selection in machine learning for network intrusion detection. The article introduces and
investigates various feature selection algorithms and datasets, validated using a correlation-based
feature selector as the objective function. A comprehensive analysis demonstrates that reducing
redundant features is practically lossless for feature selection, leading to accelerated training processes
and enhanced detection speed [21].

Y. Li et al. introduced a hybrid intrusion detection method that incorporates adaptive synthesis
and a decision tree based on the ID3. The approach involves employing multiple criteria and comparing
various models. Experimental results suggest that this method effectively increases the intrusion
detection rate [22]. T. Wang et al. introduced a multi-label feature selection method utilizing the
Hilbert-Schmidt independence criterion (HSIC) and the sparrow search algorithm. This method aims
to identify optimal features by capturing dependencies between features and all labels, employing
HSIC as a feature selection criterion. The proposed method demonstrates some effectiveness [23]. A.
Dahou et al. utilized the reptile search algorithm (RSA) to enhance the IDS in the context of Internet
of Things (IoT) environment data. In this approach, the CNN model is employed to filter the optimal
subset of features, effectively boosting the performance of the detection system [24]. M. Imran et al.
proposed a novel approach for anomaly detection that involves optimizing an artificial neural network
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with a cuckoo search algorithm. The NSL-KDD dataset was employed for real data simulation, and
the experiments were assessed through a multi-algorithm comparison to achieve optimal results [25].

Next, we present the prior work done by our group. Initially, our team proposed an enhanced
butterfly optimization algorithm combined with black widow optimization. The experimental dataset
was selected from the UNSW-NBI15 dataset, and the results demonstrated that the proposed approach
significantly enhances performance while successfully minimizing feature dimensions in the context
of feature selection for network intrusion detection [26]. Then, our group integrated the classification
optimization results of weighted K-nearest neighbor (KNN) with the outcomes of the feature selection
algorithm. We proposed a combination strategy of feature selection and weighted KNN based on the
integrated optimization algorithm. Experiments demonstrated that this proposed strategy significantly
enhances the efficiency and accuracy of network intrusion detection [27]. Finally, our group introduced
a jumping spider optimization approach, combining the HHO with the tiny hole imaging algorithm
(HHJSOA). The experimental section verified the classification accuracy and performance of the
HHJSOA using both the UNSW-NBI15 dataset and the KDD99 dataset. The experimental findings
revealed that it can significantly enhance the classification effect and address performance issues in
feature selection applications [28]. Furthermore, our team proposed a modified version of the golden
jackal optimization (mGJO), which combines two strategies and applies them to intrusion detection in
software-defined networks (SDN). Our experiments utilized the novel InSDN dataset, resulting in
improved performance across various classification metrics and feature selection [29].

Building upon the studies and considerations mentioned above, this paper introduces LBARO, a
hybrid algorithm that combines BDO and ARO. Additionally, four strategies are incorporated to
collaboratively enhance the original algorithm. Subsequently, the LBARO is employed in the feature
selection of network intrusion detection, facilitating the construction of a robust network intrusion
detection model. The experiments involve a range of network intrusion detection datasets, along with
recent superior algorithms and traditional classical algorithms, for comparative testing and evaluation.
The aim is to verify the effectiveness and excellence of the LBARO. The main contributions of this
paper are as follows.

1) A novel feature selection model for network intrusion detection is proposed. Four main
modules exist in this model. This model is used to solve the feature redundancy problem of the
intrusion detection dataset, reduce the feature dimension, and enhance the intrusion detection
efficiency and accuracy.

2) In this paper, four strategies are used to synergistically modify ARO. The mud ring feeding
strategy helps to enhance the exploration rate. The adaptive switching strategy effectively
balances the combined algorithm. The levy flight strategy can provide larger strides to escape
from the local optimum. The dynamic lens-imaging learning strategy enhances population
richness. The benchmarking function is used to test the performance of LBARO by comparing it
with other algorithms.

3) In this paper, the feature selection model incorporating LBARO is proposed, using a binary
version of LBARO to search for the optimal subset of features. The experiments are conducted
using four UCI datasets (the NSL-KDD dataset, the UNSWNB-15 dataset, and the InSDN dataset)
to test the superiority of the proposed model in this paper by comparing the models combined with
other algorithms.
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2. Basic algorithms
2.1. Artificial rabbits optimization algorithm

The ARO is primarily proposed by referencing two survival laws observed in the natural world:
meandering foraging and random hiding of rabbits. Specifically, meandering foraging serves as an
exploration strategy preventing rabbits from being detected by natural predators, allowing them to
graze near their nests. Random hiding is another strategy in which rabbits move to other burrows to
hide further away.

2.1.1.  Exploration phase

In detour foraging (exploration) within the ARO, it is assumed that each rabbit in the population
has its own area with some grass and burrows. During foraging activities, rabbits tend to randomly
move far away from other individuals in search of food and ignore nearby food. This behavior is known
as meandering foraging, and its mathematical model is expressed as

X(t+D)=X,;(0)+ Kx(X,(1)- X, (#)) +round x(0.5%0.05+ 1) xn,
i,j=L..,Nand i #j

K =Ixc (1)

I=|e-e xsin(27zr,) (2)

c(k)= {;lflk =G0 lk=1,...,Dand [ =1,..,[r;x D] (3)
else

g =randperm(D) (4)

n ~N(0,1) (5)

where X!*' represents the potential location of the ith rabbit in iteration t + 1; the rabbits’ positions
in the current iteration ¢ are shown by the symbols X, and X ; , respectively; N represents the

population’s size; 7T,,,, is the maximum number of iterations, while ¢ is the current iteration; the

size of the dimensions is indicated by d ; the randomly selected integer between 1 and D is indicated
by & ; three random values in the interval [0, 1] are 7, 7,, and 7;; n, has a typical normal

distribution; and L is the distance covered by a step in a meandering foraging performance.
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2.1.2.  Transition from exploration to exploitation

The energy factor F gradually decreases to maintain a satisfactory equilibrium between
exploration and exploitation. The mathematical model for this is expressed as

F(t)=4x(1-——)xIn+ 6)
T %

where 7, is an arbitrary number in the range of 0—1 and the value of the energy factor F fluctuates
between 0 and 2. The search mechanism based on the energy factor F is depicted in Figure 1.

Figure 1. Search mechanism based on the energy factor F .

2.1.3.  Exploitation phase

Facing chases and attacks from predators is the norm for rabbits. To survive, they dig various
holes around their nests as shelters. In each iteration, rabbits always generate burrows along the
dimension of the search space and then choose one of them randomly to hide, reducing the probability
of being captured. The mathematical model is simulated as follows:

X,(t+1) = X,(0)+ K x (1, xb,, ()= X,(1) ) (7
b, (t)=X,(t)+Hxg,(k)xX,(1) )
lif k=|r,xD
&®={f [_ | )
0 otherwise
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H=-m—xn, (10)

n, ~N(0,1) (11)

where the parameter K can be calculated using Eqs (2)—(4), bi,rt denotes the burrow of the ith rabbit

randomly selected among the D burrows utilized for hiding in the current iteration #, 7, and 7;

are two arbitrary values in the range of 0—1, and 7, has a normal distribution.

2.2. Bottlenose dolphin optimizer algorithm

The hunting technique of the bottlenose dolphin, which mimics the mud ring feeding strategy,
serves as the inspiration for the BDO. Dolphins utilize a special hunting tactic called mud ring feeding
to both feed and trap fish. Dolphins that live in groups collaborate to find prey early in the hunt. Driver
dolphins will guide the population in team hunts to surround the shoal of fish. During the encirclement,
the dolphins move their tails along the sand so that they form a plume. The purpose of the plume,
which resembles a fishing net, is that the fish become disorientated. At the same time, fish trapped in
the plume attempt to jump out of the plume. Due to the jumping behavior of the fish, other members
of the dolphin population will surround the position of the plume and capture any fish that reach the
plume position. To increase the efficiency of the attack, the dolphins reduce the encirclement.
Eventually, as the dolphins approach the location of the captured fish, more fish will jump out to be
hunted by the dolphins. During this hunt, other dolphins in the group also generate plumes
simultaneously for hunting, enhancing search efficiency.

3. Modified strategies

In this study, the defects of the ARO are modified from the perspective of synergy, which can
make the ARO effective in enhancing the convergence speed, escaping the local optimum and stability.
The strategies utilized to modify the performance of the ARO include the mud ring feeding strategy,
adaptive switching mechanism strategy, levy flight strategy, and dynamic lens-imaging learning
strategy, which utilize the complementary properties of these four strategies to synergistically optimize
the original algorithm in all aspects to maximize the gains achieved, as shown in Figure 2.

Initially, a faster search is conducted for the global exploration phase by incorporating the mud
ring feeding strategy of the BDO. Then, to better balance the LBARO, the adaptive switching
mechanism is introduced to better equilibrate and guide individual search directions. Next, the levy
flight strategy is introduced in the local exploitation phase by utilizing the resulting perturbations
for variational updates on the original algorithmic positions. Lastly, for better escaping from the
local optimum, the dynamic lens-imaging learning strategy is introduced to enhance the
exploitation capability.
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Figure 2. Modified approach diagram of the ARO.
3.1. Mud ring feeding strategy

In addition to sluggish convergence and low population diversity in the early exploration phase
of the ARO, the detour foraging mechanism lacks the ability to produce enough volatility so that it
allows the search agent to completely explore the whole field of search. The mud ring feeding strategy
of the BDO is then added to the exploitation phase aimed at enhancing the original algorithm
constraints and obtaining superior overall optimization performance. The dolphins collaborate to
locate their prey during the exploration phase. The driving dolphin begins to circle the prey area as
soon as it has been identified. The movement of the driver dolphin towards the prey location. It is
assumed that the current position of the driver dolphin represents the location of the prey. During the
search process, this position is searched for a better solution. Therefore, the mud ring feeding strategy
of the BDO has excellent exploration ability and fast contraction speed, which can effectively make
up for the shortcomings of the ARO [30]. The mathematical model for this is expressed as

X=X, + X, xrand x e’ x cos(2x x O(t)) (12)
t
0(t) =1 (1=, ) x—— (13)
TmaX
Xipp =X +a, xrand (X, — X},) (14)

where X, denotes the updated position of the driver dolphin, X,, denotes the position of the
driver dolphin, rand is a random number between [-1, 1], which helps to spread out the search
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capability, and € is a constant that aids in encircling the place during the search by haphazardly
decreasing. X, denotes the updated position of the follower dolphin, X, denotes the current

position of the follower dolphin, denotes the position of the driver dolphin, and @, isan acceleration
factor that accelerates the movement of the follower dolphin towards the driver dolphin.

3.2. Adaptive switching mechanism strategy

The meandering foraging strategy of the ARO can still provide some guarantee for the survival
of the rabbits, although it suffers from the problems of poor volatility and slow convergence to a certain
extent. The mud ring feeding strategy introduced is not a direct replacement for the detour foraging
strategy. To further optimize the balance between the two, an extra parameter that directs the search
direction must be added to the combined algorithm. Therefore, this paper introduced an adaptive
switching mechanism of one kind [31]. The mathematical model for this is expressed as

E =2E,E, (15)
t
El:l_a (16)

where E is a random value that ranges between -1 and 1, E is a control parameter that
decreases linearly, ¢ is the current iteration number, and 7,,,, is the maximum iteration number.
The global exploration phase of the algorithm occurs when | £ | > 1, while the local exploitation
phase occurs when |E| < 1. E drops consistently to improve the balance between the phases of
exploration and exploitation.

3.3. Levy flight strategy

When rabbits face predators, they will use the holes dug around the nest as hiding places out of
the need for survival. At this point, the random number 7, utilized to generate the perturbation can,

to some extent, provide a small range of changes in the location of the update mutation so that the
rabbit’s choice of hiding place has a certain degree of randomness. However, as the ARO iterates, the
fluctuation of random numbers shows relatively weak performance and may not provide sufficient
leaps when facing the local optimum. Consequently, the ARO might lead to the capture of the rabbit,
resulting in getting trapped in the local optimum. Thus, at this point, the levy flight strategy can
generate random numbers with larger spans, providing more variables for replacing the random
number 7, [32]. Since the stochastic hiding phase is the exploitation phase, levy flight enhances the
spatial search capability and the ability of the ARO to escape from the local optimum. This effectively
searches for the global optimal solution in the iterations of the ARO [33]. The mathematical model for
this is expressed as

X;(t+)=X,(t)+ K x(axlevy(B)xb, (t)- X,(t) ),i=1,...,.N (17)
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Uxy
levy(B) :W (18)
u~(0,0,),v~(0,0,) (19)
r(1+y)xsin*2y |
o, = 2}:_1 ,o, =1 (20)
C(l+y)xyx2?

where @ is fixed at 0.15; # and V follow Gaussian distributions with mean 0 and variances &’
and o,°, respectively; The conventional gamma function is represented by I'; and the correlation
parameter, which is set to 1.5, is represented by 7 .

3.4. Dynamic lens-imaging learning strategy

In this paper, the levy flight strategy is adopted to disturb the position update to enhance the
exploitation ability of the ARO locally and to enhance the rabbit’s chance of survival. Nevertheless, if
one only uses the levy flight strategy, the goal of preventing the ARO from reaching the local optimum
is defeated by a probabilistic solution. Therefore, the dynamic lens-imaging learning strategy is
introduced after each algorithm iteration. It improves the local optimal ability of the ARO and prevents
sliding into iterative stagnation. The survival potential of the rabbits has been effectively boosted. The
dynamic lens-imaging learning strategy has been recently proposed [34,35]. It is derived from the
opposition-based learning method. This strategy derives the law of convex lens imaging from the law
of optics. It is based on the principle of refracting a solid from one side to the other through a convex
lens to generate an inverted image.

, _ub+lb+ub+lb_£
2 2xp @

X

1)

where ub and Ib are the upper and lower bounds, respectively,and X and X are the individual

and its opposing individual, called the scale factor, respectively. The scaling factor ¢ improves the
local exploitation of the original algorithm. The scaling factor is typically regarded as a constant in the
original lens imaging learning strategy, which reduces the convergence performance of the original
algorithm. Therefore, a new nonlinear dynamically decreasing scale factor based on nonlinear
dynamics is introduced, which allows for larger values to be obtained in the early iterations of the
modified algorithm. Thus, the modified algorithm is able to search in a wider range of different
dimensional regions and enhance the diversity of the population. Smaller values are obtained towards
the end of the modified algorithm iterations, enabling a refined search in the proximity of optimal
individuals to further enhance the resolution of the local optimum.
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] (22)

As the population is more likely to fall into the local optimum during the exploitation phase, the
dynamic lens-imaging learning strategy was adopted for the iterated population of the LBARO. In
each iteration, the positions of the population are randomly altered based on both the total number of
individuals in the current population and the fitness of the best solution, which is computed and
maintained. This is done to further enhance population variety and prevent local optimum.

R ¥ P
P = Gin = (Ginax =S i) (T

max

3.5. Proposed algorithm

The LBARO is constructed based on the ARO and consists of four main components. First, by
combining the mud ring feeding strategy with ARO, which takes advantage of the rapid convergence
rate of strategy in updating the position, the global exploration capability is improved. The introduction
of an adaptive switching mechanism facilitates the adjustment between the exploration and
exploitation phases. To prevent subsequently falling into the local optimum, the levy flight strategy is
also implemented during the local exploitation phase of the ARO. Lastly, the dynamic lens-imaging
learning strategy is presented to provide better positional variability while also improving population
variety and stochastically optimizing the population. This helps the population avoid stagnating in the
local optimum. The execution phases of the LBARO are displayed below. The flowchart of LBARO
is depicted in Figure 3, and its pseudo-code description is provided in Algorithm 1.

Algorithm 1. Pseudo-code of the LBARO

1. Initialize the population size N, the maximum iterations T, , the dimension D, Initialize the
position of each search agent X,

2. Calculate the fitness Fit, and X,,, is the best solution found so far

3. While t<T

For each X,

>

5 Calculate the factor E using Eq (16) //Adaptive switching mechanism strategy
6.  Calculate the energy factor F using Eq (7)
7 If |E|>1 then

8 Updates the position of search agent using Eqs (13)—(15) //Mud ring feeding strategy
9. Else

10. If | F|>1 then

11. Updated the position of search agent using Eqgs (8)—(12)

12. Else

13. Updated the position of search agent using Eqs (18)—(21) //Levy flight strategy
14. End If

15. End If

16. Updated the position of search agent using Eq (22) //Dynamic lens-imaging learning strategy
17. End For

18: End While

19. Return X,
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Start

Initializes the parameters and location
of each search agent

Check boundaries and calculate the fitness
of all search agents

Let BestX be the best solution obtained so far

A

Calculate the adaptive transformation mechanism E using Eq (16)

Yes No

BDO-Exploration
Mud ring feeding strategy

Calculate the energy factor F using Eq (7)

A

Update the current position || Update the current position
via Eq (13) via Eq (15)

Update the current location Update the current position using
via Eq (1) levy flight strategy via Eq (18)

Perform the ynamic lens-imaging learning strategy Eq (22)
to randomly mutate the position of the current update population

Assess fitness and update the location of the entire population

End

Figure 3. Flow chart of the LBARO.
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3.6. Time complexity

The time complexity can effectively measure the running efficiency of the algorithm. Time
complexity is undoubtedly one of the very important performance metrics. An in-depth discussion of
time complexity can provide a better understanding of the performance characteristics of algorithms
and provide guidance for practical applications. The excellence of an algorithm depends not only on
the quality of individual metrics but also on whether the complexity of the algorithm has increased. In
the feature selection of network intrusion detection, an excess of redundant features can decrease
detection efficiency, while the algorithm’s operational speed also impacts the overall system
performance. Therefore, one of the requirements for enhancing the algorithm is to minimize increases
in complexity while building upon the original algorithm. According to the pseudo-code in Algorithm 1,
the overall time complexity is determined by the population size (N), the maximum number of
iterations (T), and the dimensionality (D). The time complexity of ARO can be expressed as O(1 + N
+TXN+xTxNxD+xT xN x D), which is O(N + NT + NDT). During the initialization phase of
LBARO, the rabbit locations are randomly generated, requiring a time complexity of O(N).
Throughout the iterative phase of LBARO, the time complexity of evaluating the rabbit’s frontal
fitness and updating its position is O(N x T + N x D x T). Hence, the time complexity of LBARO
remains O(N + NT + NDT), indicating no increase compared to ARO.

4. Proposed model

For network intrusion detection, the corresponding feature selection model was constructed with
the LBARO, as illustrated in Figure 4. Feature selection of network intrusion detection model based
on the LBARO can be divided into four core modules according to their functional roles: the data
acquisition module, the data pre-processing module, the feature selection module, and the model
evaluation module [36-39].

1) Data acquisition module

The rapid development of the Internet era results in a substantial and cumbersome redundancy of
network data, necessitating its analysis. Therefore, it is necessary to collect the network reality traffic
data through relevant tools. To generate a dataset for further analysis of the data, the network data
collection component primarily gathers the network data packets that the host obtains from the network.
In the study, four datasets (UCI, NSL-KDD, UNSW-NB 15, and InSDN) are utilized as simulations of
realistic network data.

2) Data pre-processing module

The data collected in the actual network is generally dirty data, and there are usually problems such
as missing numbers, data noise, data inconsistency, data redundancy, unbalanced data sets, outliers, and
data duplication. Therefore, before using the data, effective data cleaning must be carried out.

The first phase involves cleaning the data, which includes identifying and eliminating anomalous
data, handling missing or incorrect data, and getting rid of duplicate data. The data is consistently
classified as numerical in the second stage. This is done to prevent the occurrence of later experimental
input value format inconsistency by transforming the character type or other types of data using label
coding. The third step of the normalization process is carried out, utilizing the normalization function
to process the data to tackle the problem of the substantial disparities in the dimensions of the attributes
of the dataset species utilized in this work. The procedure maps all the data values into the [0,1] interval,
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which can achieve the aim of converting the un-normalized data into normalized data to increase the
accuracy of feature selection.

3) Feature selection module

After the dataset is crawled from the web and undergoes data cleaning, simple data filtering has
been performed to some extent. There will still be an overwhelming number of redundant features that
are invisible to the unaided eye, though, because network data is typically very vast. These
characteristics greatly increase the complexity of detecting network intrusions, decreasing the rate of
detection and taking an unnecessary amount of time. Thus, the existence of feature selection provides
further processing of the dataset before intrusion detection. This effectively reduces redundant features,
reduces the amount of data, and improves the detection correctness.

Next, the preprocessed dataset undergoes an iterative optimization search conducted by an
intelligent optimization algorithm. The population of rabbits forages and avoids obstacles in search of
a better place with each generation. When the iteration concludes, the algorithm obtains where the
current ideal location exists, which is the index of the optimal subset. At this point, the module obtains
the optimal feature subset selection to achieve the aim of de-redundant feature subsets and data
dimensionality reduction.

4) Model evaluation module

Evaluating the classifiers means estimating the average degree of correctness of the classifiers’
decisions at the time of prediction. Common classifiers are SVM classifier, KNN classifier, K-means
classifier, and plain Bayesian classifier. Therefore, it is necessary to select or design the classification
effect evaluation metrics according to the characteristics of the scene. In the paper, a suitable KNN
classifier is utilized for evaluation.

Following the feature selection by the algorithm, the dataset is obtained concerning
dimensionality reduction. At this point, the KNN classifier is invoked and the dataset of the optimal
feature subset optimized by LBARO is provided as an input parameter to the classifier. After the
prediction by the classifier, the data relevant to the classification is collected. Finally, to evaluate the
overall model performance, metrics such as accuracy, recall, precision, and F1-score are employed, all
of which are commonly utilized to assess classification effectiveness.
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Figure 4. Feature selection model based on LBARO.

5. Experimental results
5.1. LBARO capability test
5.1.1.  Experimental environment

The experimental tests were carried out in a single setting to guarantee the objectivity and fairness
of experiments. The Intel Core 15-12490F CPU@3.00 GHz processor type, the Windows 11 operating
system, and the MATLAB 2022b programming language are all utilized in the experimental setup.
5.1.2.  Benchmark function

For this experiment, eight common benchmark test functions were selected, comprising four
single-peak functions (f1-f4) and four multi-peak functions (f5—f8), chosen with moderate

concentrations [40]. The experiment involves a degree of randomness. The test functions in the experiment
were run independently multiple times. The benchmark test functions are depicted in Table 1.
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Table 1. Benchmark function expressions.

Function expressions Dimension  Range fimin

L 30 -100,100] 0O
fo=3 1100, 1001

i=1

: . 30 -10, 10 0
1@ =+ [Tl -l

i=1 i=1

30 [-100, 100] O

f3<x>=i(2xjj2

i=1 \_j—1

30

f,(x) = max, {|x,.|,1 <i< n}

fs(x)=i—xl. sin(\/M) 30

i=1

fo(x)=-20 exp(—O.Z lex[z ] —exp (12005(27”[)) +20+e
nig niis

£,@) =f{10sin<ny,->+"zl<y,. 17 [1410sin*(7y,.) ]+ (0, —1)2} 30
n

i=1

+>_u(x,,10,100,4)

i=1

V; =1+x"—Jrl
' 4
k(x,-1D)",x,>a
u(xj’aakam): 0,_a <Xl. <a

k(-x,—a)",x,<-a

f0=-3 [(X-a)X-a) +¢]

[-32, 32] 0

[-500,500]  -418.9829

x D
[-32, 32] 0
[-50, 50] 0
[0, 10] -10.5363

5.1.3. Benchmark function results

Table 2 provides the parameters of each algorithm. The average optimal value, average worst
value, average value, and standard deviation of the four algorithms, AO, GWO, ARO, and LBARO,
are calculated independently and run thirty times on single-peak and multi-peak test functions.

Table 2. Parameterization.

Algorithms Parameter values

AO a=0.1,6=0.1

PSO cl=2,c2=2

ARO —

LBARO d1 =100,d2=10,af=3.5

The fitness graph in Figure 5 illustrates how the LBARO converges more rapidly and accurately
than alternative algorithms. Further evidence of LBARQ’s superior stability and results is presented in
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Table 3. This demonstrates that the LBARO can balance exploration and development while achieving
a faster and more accurate convergence rate throughout the global exploration stage. It can enhance
the population richness in the local exploitation phase and effectively avoid falling into the local
optimum. As a result, the LBARO has better ability and more robustness under the iterative
optimization of the same algorithm.

Table 3. Benchmark function results.

Function Algorithms Min Max Ave Std
F1 AO 1.79E-158 1.32E-103 4.44E-105 2.41E-104
PSO 9.79E-01 4.36E+00 2.58E+00 8.57E-01
ARO 6.75E-70 1.93E-55 7.85E-57 3.62E-56
LBARO 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 AO 4.47E-84 2.49E-67 8.30E-69 4.55E-68
PSO 2.21E+00 8.09E+00 4.41E+00 1.49E+00
ARO 6.14E-39 5.16E-29 1.73E-30 9.41E-30
LBARO 0.00E+00 1.76E-188 5.87E-190 0.00E+00
F3 AO 1.53E-155 1.74E-102 6.53E-104 3.18E-103
PSO 9.91E+01 2.83E+02 1.86E+02 5.00E+01
ARO 2.63E-55 1.62E-42 1.25E-43 4.05E-43
LBARO 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F4 AO 1.09E-80 9.30E-53 3.10E-54 1.70E-53
PSO 1.52E+00 2.36E+00 2.00E+00 2.00E-01
ARO 2.16E-29 8.77E-23 6.05E-24 1.98E-23
LBARO 6.15E-143 4.03E-110 1.34E-111 7.36E-111
F5 AO -4.03E+03 -2.76E+03 -3.35E+03 2.84E+02
GWO -8.66E+03 -3.30E+03 -6.12E+03 1.26E+03
ARO -1.02E+04 -8.53E+03 -9.28E+03 4.36E+02
LBARO -1.24E+04 -9.02E+03 -1.05E+04 1.09E+03
F6 AO 4.44E-16 4.44E-16 4.44E-16 0.00E+00
GWO 1.66E+00 3.44E+00 2.66E+00 4.72E-01
ARO 4.44E-16 4.44E-16 4.44E-16 0.00E+00
LBARO 4.44E-16 4.44E-16 4.44E-16 0.00E+00
F7 AO 7.35E-09 1.80E-05 3.12E-06 5.13E-06
GWO 7.97E-03 4.19E-01 6.22E-02 7.89E-02
ARO 1.18E-05 2.13E-04 5.63E-05 4.11E-05
LBARO 1.57E-32 1.57E-32 1.57E-32 5.57E-48
F8 AO -1.04E+01 -1.03E+01 -1.04E+01 2.45E-02
PSO -1.04E+01 -2.75E+00 -8.47E+00 2.96E+00
ARO -1.04E+01 -2.77E+00 -9.39E+00 2.33E+00
LBARO -1.04E+01 -1.04E+01 -1.04E+01 0.00E+00
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5.2. Feature selection fitness function

Combining feature selection with intelligent optimization algorithms is a superior approach
because of the advancement and growth of these algorithms in recent years, which has increased their
effectiveness. The performance of the feature subset is significantly affected by the number of selected
features and the classification error rate. The evaluation function in question is displayed as follows:

Fiﬂftess=a><Er+ﬂ><‘Sd xFe, (23)

where Er is the classification error rate of the specified classifier, Fitness is the ideal value of a
workable solution as represented by a single member of the population, Se is the quantity of chosen
feature subsets, Fe represents the total features, @ and £ denote the two weights, with @ set to

0.99and £ t00.01.

This work presents the introduction of the sigmoid function to LBARO, enabling its conversion
to binary LBARO for discrete situations. The binary version of the LBARO is utilized in this study for
feature selection. The population members act as the seeking agents, and the locations of agents are
obtained through the iterations of the algorithm. The population is transformed into a binary encoded
population with individuals described as X,,, where d is the feature dimension, via the conversion
function. The characteristics of this workable solution are chosen when X,, = 1. Otherwise, it is not

chosen [41]. The following formula displays its transformation function:

(24)

l,rand() > Sigm(X,
Sign(x, )~ Ly _[brand0=Sign(x,) ]
0,rand () < Sigm(X,,)

l4+e %’

5.3. Experimental parameters

In the experimental context, the experimental algorithms are AO, GWO, ARO, and LBARO, and
different datasets will be generated to examine the overall performance of the respective models. The
experiment selects a variety of datasets, offering varied test conditions and data as much as feasible. It
can verify the ability of redundant features and inspect the perfection of the overall model performance.
The experimental settings were set: the K-fold cross-validation multiplier was 10, the population size
N = 30, and the number of iterations Tmax = 50.

Table 4. Parameterization.

Parameters Numbers
K-fold cross-validation multiplier 10
Population size 30
Maximum iterations 50

5.4. UCI dataset

The UCI dataset is employed to evaluate the efficacy of the LBARO in dimensionality reduction [42].
Four UCI datasets are selected as test objects, and their complete information is provided in Table 5.
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Table 6 indicates the experimental outcomes of UCI datasets.

The LBARO achieved the highest scores across all four classification metrics on the lonosphere,
Heatstatlog, and Sonar datasets in the experiment. Its classification performance is significantly
superior to the other algorithms.

The accuracy and precision of the vehicle dataset are marginally worse than those of the PSO, but
generally, the effect is the best and the other metrics remain fantastic. Though the classification
performance is still inferior to the three comparison methods, the LBARO achieves an outstanding
overall ranking in terms of score.

Table 5. UCI dataset.

Number Dataset name Sample size Number of features
1 Ionosphere 351 34
2 Vehicle 846 18
3 Heatstatlog 270 13
4 Sonar 208 61

Table 6. Test results of the UCI.

Algorithms Metrics Ionosphere Vehicle Heatstatlog Sonar
AO Accuracy 0.933 0.759 0.864 0.887
Recall 0.970 0.828 0.758 0.871
F1-score 0.948 0.873 0.820 0.885
Precision 0.928 0.923 0.893 0.900
PSO Accuracy 0.867 0.779 0.877 0.871
Recall 0.955 0.857 0.758 0.903
F1-score 0.900 0.909 0.833 0.875
Precision 0.851 0.968 0.926 0.848
ARO Accuracy 0.905 0.762 0.864 0.920
Recall 0.970 0.812 0.758 0.935
F1-score 0.928 0.881 0.820 0.921
Precision 0.889 0.963 0.893 0.906
LBARO Accuracy 0.943 0.778 0.889 0.935
Recall 0.985 0.867 0.758 0.968
F1-score 0.956 0.912 0.847 0.938
Precision 0.929 0.963 0.962 0.909

5.5. NSK-KDD dataset

The NSL-KDD dataset is the modified edition of the KDD99 dataset [43—46]. It emerged as the
solution to several intrinsic issues, for instance the duplicate record issue. The NSL-KDD dataset is
divided into two subsets: a training set and a test set.

The NSL-KDD dataset, which consists of 41 features with one column of labelled characteristics,
is utilized for classification testing. The dataset includes four attack types: denial of service (DoS),
probing, user to root (U2R), and remote to local (R2L). The labels for the typical type of data are
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assigned to 0, while the labels for the four types of aberrant attacks are set to 1. Following the deletion
of the features in columns 10-22 of the dataset, all the data are normalized. The features of non-essential
network connection records are also removed. Additionally, 10% and 5% of the training and testing sets,
respectively, are randomly chosen for testing. ROC curve is presented in Figures 6 and 7, while
corresponding test data is provided in Tables 7 and 8.

The results gathered from the experiments on the 5% dataset are indicated in Table 7. The LBARO
outperformed the other three algorithms in all three metrics, except for recall. Additionally, accuracy
has increased by 1.8-3.4% when compared to the other algorithms. These findings suggest that the
modified algorithm has a clear accuracy in classification and does not exhibit any glaring classification
errors. With a 1.4-2.5% increase in the Fl-score, it can be said that the updated method more
effectively balances recall and precision and can benefit from both effects simultaneously. LBARO is
precisely accurate in classifying the data samples as positive classes, and the occurrence of incorrect
predictions is significantly minimized. The precision is enhanced by 2.4-4.7%. Additionally, by
reducing the number of chosen feature values to six, a significant number of redundant features are
eliminated, which lessens the workload associated with intrusion detection and boosts its efficiency.
This suggests that for the effect of feature selection on a 5% dataset, the LBARO performs best overall.

The results gathered from the experiments on the 10% dataset are indicated in Table 8. The
data in the table illustrates that while the recall of the AO and LBARO is the same, the accuracy
and F1-score of the LBARO are significantly higher than those of the AO. The modified algorithm
performs better overall and has a more comprehensive effect than the original PSO and ARO,
which were the least effective and ranked low for the number of features selected. This suggests
that the feature selection of the LBARO on the 10% dataset yields the best overall performance.
The results indicate that with feature selection on 10% of the dataset, the LBARO output reflects
its best overall performance.

The ROC curve is intuitively effective in reflecting the excellence of the classifier’s performance.
The extent to which the ROC curve is leaning towards the upper-left corner determines the excellence
of the classifier. The comparison indicates that, for different numbers of subsets taken from the NSL-
KDD dataset, the results are all that the curve curvature of LBARO is more towards the upper left
corner. Its classification accuracy is the most superior.

ROC Curve

True Positive Rate

0 0.1 02 03 04 05 06 07 08 09 1
False Positive Rate

Figure 6. ROC curve of 5% NSL-KDD.
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Table 7. Classification results of 5% NSL-KDD.

Metrics AO PSO ARO LBARO
Accuracy 0.813 0.802 0.797 0.831
Recall 0.957 0.938 0.973 0.951
F1-score 0.815 0.804 0.805 0.829
Precision 0.710 0.703 0.687 0.734
Number of features 10 14 12 6

Table 8. Classification results of 10% NSL-KDD.

Metrics AO PSO ARO LBARO
Accuracy 0.803 0.843 0.806 0.846
Recall 0.969 0.958 0.970 0.969
F1-score 0.809 0.840 0.812 0.845
Precision 0.694 0.748 0.700 0.749
Number of features 10 15 15 11

5.6. UNSW-NB 15 dataset

The UNSW-NBI1S5 dataset is available for network intrusion detection. It is a public dataset. It is
provided by the Network Security Laboratory at the University of New South Wales in Sydney [47,48].
The dataset simulates network traffic in a real network environment and contains a variety of common
network attacks and normal traffic. The UNSW-NB 15 dataset contains 175,341 network connection
records, which include summary information, network connection characteristics, and traffic statistics.
The network connections in the dataset are labelled as normal traffic or with different types of attacks
such as DoS, scanning, intrusion, etc. In addition, it contains a detailed description of the attacks and
a categorization of the attack types.

UNSW-NB 15 dataset preparation. Firstly, deleting superfluous features, and removing ID
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features in the dataset, is only the data serial number. Secondly, the data is numericized, comprising
the features proto, service, status, and attack cat, and their numerical values are processed. In the proto
attribute, since its values are too varied and yet certain data are too little, the three most essential values
of network traffic TCP, UDP, and ICMP are mapped to 1, 2, and 3, respectively, and the rest of the
values are mapped to 4. The rest of the non-numerical properties are changed according to the natural
number ordering. The data is then normalized.

Table 9 shows the data results of the experiments on the UNSW-NB 15 dataset 10,000 dataset.
Based on the data, LBARO scores higher than the other three algorithms in all three metrics except the
precision rate, and the comparison shows that the improvement exists at most 0.6%, 2.19%, and 0.85%
effect enhancement in the accuracy, recall, and F1-score respectively. Additionally, the final method
reduces feature values to 12, thereby filtering out superfluous redundant features and decreasing
intrusion detection effort while also increasing intrusion detection efficiency. According to the
statistics, the LBARO performs the best overall when it comes to how feature selection affects the
UNSW-NB 15 dataset.

Table 9. Classification results of UNSW-NB 15.

Metrics AO PSO ARO LBARO
Accuracy 0.9210 0.9217 0.9260 0.9270
Recall 0.9303 0.9130 0.9302 0.9349
F1-score 0.8966 0.8956 0.9024 0.9041
Precision 0.8652 0.8788 0.8763 0.8753
Number of features 12 21 13 12

The iterative fitness curve results of the algorithms are presented in Figure 8. The number of folds
in the fitness curve can indicate the LBARO’s effectiveness in avoiding local maxima, while the
curve’s steepness and height can reflect its ability to find iterative maxima in a given environment. The
fitness curve in the figure illustrates that LBARO can achieve a higher fitness value and a reduced
error with the same population size and number of repetitions. The frequency of zigzags in the curve
indicates that LBARO consistently navigates out of the local optimum and approaches the optimal
solution more efficiently during the procedure.

Fitness Value

==A0!
=== PSh
ARO
L A A L L L " LBARO
0 5 10 15 20 25 30 35 40 45 50
Number of Iterations

89.5

Figure 8. Fitness curves of UNSW-NB 15.

Electronic Research Archive Volume 32, Issue 3, 1770-1800.



1793

The LBARO has the best classification accuracy, as demonstrated by the comparison of the ROC
curve in Figure 9, which indicates superior results. With a value range of [0, 1], the AUC value can
also, to some extent, represent the classifier’s performance. As can be seen from the bar chart in Figure 10,
the AUC values of the modified algorithm are also all higher than the other algorithms and are closer
to 1. These results signify the authenticity of its detection method, rendering it notably valuable.

True Positive Rate

0 01 02 03 04 05 06 07 08 09 1
False Positive Rate

Figure 9. ROC curves of UNSW-NB 15.
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Figure 10. AUC results of UNSW-NB 15.
5.7. InSDN dataset

The SDN concept was introduced by Prof Mckeown in 2009. It has been gaining more and more
acceptance and has also been utilized and implemented in numerous data centers [49,50]. It can be
challenging for manufacturers to address the numerous vulnerabilities and dangers posed by
developing technology. Consequently, the deployment of IDS is an important component of the
network architecture. The aim is to monitor the network for the presence of malicious activities. No
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existing publicly available dataset can be directly utilized for anomaly detection systems applied in
SDN networks. InSDN by Nhien-An Le-Khac first generated a comprehensive SDN dataset to validate
IDS’s performance. The new dataset includes benign and various attack categories that can occur in
different elements of the SDN platform. 343,939 instances total are included in the dataset for both
normal and attack traffic, with 68,424 instances coming from normal data and 27,515 instances from
attack traffic.

Classification test on the InSDN dataset. There are three files in the InSDN dataset, in which
Normal data.csv is the normal data, and the remaining two files, metasploitable-2.csv, and OVS.csv
are the anomalous attack information. The label “normal” is assigned the value 0, while the remaining
anomalous data is labelled with 1. After normalizing the data, 10,000 random data points are taken
from the data set for testing.

Table 10 presents the results of the experiments on the 10,000-item InSDN dataset. From the
presented data, it is evident that LBARO performs well overall. Although it ranks second in the number
of selected features, there is no significant difference compared to AO, and both achieve better results.
Furthermore, the score data for the other four performance indicators surpasses that of other algorithms,
all showing improvements in their metrics. The comprehensive evaluation reveals that LBARO
enhances detection accuracy by effectively reducing redundant features and improving detection rates.
Therefore, it can be concluded that LBARO’s feature selection effect on the InNSDN dataset is relatively
superior and leads to certain performance improvements.

Table 10. Classification results of InSDN.

Metrics AO PSO ARO LBARO
Accuracy 0.9857 0.9860 0.9863 0.9900
Recall 0.9837 0.9837 0.9845 0.9861
F1-score 0.9825 0.9829 0.9833 0.9877
Precision 0.9813 0.9821 0.9821 0.9894
Number of features 5 15 14 6
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Figure 11. Fitness curve of InSDN.
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Figure 13. AUC results of InSDN.

The iterative fitness curve results of the algorithm are presented in Figure 11. At this point, for
the zigzag frequency of the fitness curves, the test results in the InNSDN dataset are similar to those in
the UNSWNB-15 dataset. It indicates that the excellence of LBARO can be effectively demonstrated
in different datasets as well. Moreover, upon zooming in on Figure 12, the discernible ROC curve
exhibits a more pronounced upper-left corner, indicating a superior classification effect based on the
evaluation criteria. As depicted in the bar chart in Figure 13, while all four algorithms exhibit improved
effectiveness, the AUC value of the modified algorithm remains the highest, underscoring the
authenticity of its detection method.

6. Conclusions

This work synergistically modifies the ARO by utilizing four approaches. By absorbing the mud
ring feeding strategy of the BDO, the advantages of its global exploration ability and fast convergence
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speed are taken advantage of. The shortcomings of the ARO, with poor global exploration ability and
slow convergence speed, are compensated. In the meantime, an adaptive switching mechanism is
presented to guide the equilibrium between the original algorithm and the mud ring feeding strategy.
Also, to take advantage of its capacity to produce giant strides and cause the algorithm to deviate as
much as possible from the local optimum, the levy flight strategy is implemented during the local
exploitation phase. Then, the dynamic lens-imaging learning strategy is introduced to further enhance
the perturbation ability. This strategy aims to improve the ARO’s overall performance by increasing
the population richness of the populations. At this point, the LBARO is adopted to construct a feature
selection model for network intrusion detection, which effectively overcomes the issue of the existence
of unduly duplicated features in the network intrusion detection dataset. The experimental design
examines the model integrated with various algorithms, and the conclusions are as follows:

1) The exploration ability of the ARO can be effectively enhanced by the LBARO, ensuring that
the iteration process can converge rapidly. Additionally, the exploration and exploitation of the
LBARO are more balanced, and the last larger volatility and population richness enhancement can
make it easier for the LBARO to escape the local optimum.

2) Four benchmark functions, four single-peaks, and four multi-peaks, are utilized to evaluate the
performance of the LBARO. The findings indicate that, compared with other algorithms, the LBARO
obtains the minimum values and lowest standard deviation and converges more rapidly. It exhibits
superior stability and an improved ability to approach the ideal.

3) The study presents a novel LBARO-based feature selection model for network intrusion
detection. It excels in both dimensionality reduction and detection rate enhancement, securing the top-
ranking position in overall tests conducted on four distinct types of network datasets simulating real
network traffic data.

In the era of big data, data analysis is imperative. Differences in analyzed data can directly affect
the generation of economic value and the yield of social benefits. However, the data contains
unnecessary characteristic features. This undoubtedly causes a significant impact on the accuracy of
data prediction and analysis, among other issues. To improve the quality of data, a significant volume
of duplicated network traffic must be subjected to data dimensionality reduction. The research
demonstrates that the processing of network traffic data can be solved using feature selection in the
network intrusion detection model.

The network traffic data that has undergone dimensionality reduction processing can significantly
improve the accuracy and prediction time of the ensuing prediction and offer a certain implementation
baseline for actual data processing. Currently, this research only considers the experimental
comparison of binary classification on four network datasets. To improve the performance of the
proposed model and strengthen its stability, additional network datasets will be employed in further
research to provide a more complete data classification scenario.
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