A tumor-immune system with diffusion and delays is proposed in this paper. First, we investigate the impact of delay on the stability of nonnegative equilibrium for the model with a single delay, and the system undergoes Hopf bifurcation when delay passes through some critical values. We obtain the normal form of Hopf bifurcation by applying the multiple time scales method for determining the stability and direction of bifurcating periodic solutions. Then, we study the tumor-immune model with two delays, and show the conditions under which the nontrivial equilibria are locally asymptotically stable. Thus, we can restrain the diffusion of tumor cells by controlling the time delay associated with the time of tumor cell proliferation and the time of immune cells recognizing tumor cells. Finally, numerical simulations are presented to illustrate our analytic results.
Citation: Yuting Ding, Gaoyang Liu, Yong An. Stability and bifurcation analysis of a tumor-immune system with two delays and diffusion[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1154-1173. doi: 10.3934/mbe.2022053
A tumor-immune system with diffusion and delays is proposed in this paper. First, we investigate the impact of delay on the stability of nonnegative equilibrium for the model with a single delay, and the system undergoes Hopf bifurcation when delay passes through some critical values. We obtain the normal form of Hopf bifurcation by applying the multiple time scales method for determining the stability and direction of bifurcating periodic solutions. Then, we study the tumor-immune model with two delays, and show the conditions under which the nontrivial equilibria are locally asymptotically stable. Thus, we can restrain the diffusion of tumor cells by controlling the time delay associated with the time of tumor cell proliferation and the time of immune cells recognizing tumor cells. Finally, numerical simulations are presented to illustrate our analytic results.
[1] | N. Bidmon, S. Kind, M. J. P. Welters, D. Joseph-Pietras, K. Laske, D. Maurer, et al., Development of an RNA-based kit for easy generation of TCR-engineered lymphocytes to control T-cell assay performance, J. Immunol. Methods, 458 (2018), 74–82. doi: 10.1016/j.jim.2018.04.007. doi: 10.1016/j.jim.2018.04.007 |
[2] | L. Chen, D. Qiao, J. Wang, G. Tian, M. Wang, Cancer immunotherapy with lymphocytes genetically engineered with T cell receptors for solid cancers, Immunol. Lett., 216 (2019), 51–62. doi: 10.1016/j.imlet.2019.10.002. doi: 10.1016/j.imlet.2019.10.002 |
[3] | M. Yu, G. Huang, Y. Dong, Y. Takeuchi, Complicated dynamics of tumor-immune system interaction model with distributed time delay, Discrete Cont. Dyn-B, 7 (2020), 2391–2406. doi: 10.3934/dcdsb.2020015. doi: 10.3934/dcdsb.2020015 |
[4] | L. Han, C. He, Y. Kuang, Dynamics of a model of tumor-immune interaction with time delay and noise, Discrete Cont. Dyn-S, 9 (2020), 2347–2363. doi: 3934/dcdss.2020140. |
[5] | P. Bi, S. Ruan, Bifurcations in delay differential equations and applications to tumor and immune system interaction models, SIAM J. Appl. Dyn. Syst., 12 (2013), 1847–1888. doi: 10.1137/120887898. doi: 10.1137/120887898 |
[6] | R. Yafia, Hopf bifurcation in differential equations with delay for tumor-immune system competition model, SIAM J. Appl. Math., 6 (2007), 1693–1703. doi: 10.1137/060657947. doi: 10.1137/060657947 |
[7] | L. Pang, S. Liu, X. Zhang, T. Tian, Mathematical modeling and dynamic analysis of anti-tumor-immune response, J. Appl. Math. Comput., 62 (2020), 473–488. doi: 10.1007/s12190-019-01292-9. doi: 10.1007/s12190-019-01292-9 |
[8] | Y. Jia, Bifurcation and pattern formation of a tumor-immune model with time-delay and diffusion, Math. Comput. Simulat., 178 (2020), 92–108. doi: 10.1016/j.matcom.2020.06.011. doi: 10.1016/j.matcom.2020.06.011 |
[9] | S. Banerjee, R. P. Sarkar. Delay-induced model for tumor-immune interaction and control of malignant tumor growth, Biosystems, 91 (2008), 268–288. doi: 10.1016/j.biosystems.2007.10.002. doi: 10.1016/j.biosystems.2007.10.002 |
[10] | S. Khajanchi, S. Banerjee, Stability and bifurcation analysis of delay induced tumor immune interaction model, Appl. Math. Comput., 248 (2014), 652–671. doi: 10.1016/j.amc.2014.10.009. doi: 10.1016/j.amc.2014.10.009 |
[11] | L. R. Dickman, Y. Kuang, Analysis of tumor-immune dynamics in a delayed dendritic cell therapy model, Chaos, 11 (2020), 113108. doi: 10.1063/5.0006567. doi: 10.1063/5.0006567 |
[12] | A. Kaddar, H. T. Alaoui, Global existence of periodic solution in a delayed tumor-immune model, Math. Model Nat. Pheno., 5 (2010), 29–34. doi: 10.1051/mmnp/20105705. doi: 10.1051/mmnp/20105705 |
[13] | M. Yu, Y. Dong, Y. Takeuchi, Dual role of delay effects in a tumour-immune system, J. Biol. Dynam., 11 (2017), 334–347. doi: 10.1080/17513758.2016.1231347. doi: 10.1080/17513758.2016.1231347 |
[14] | F. A. Rihan, S. Lakshmanan, H. Maurer, Optimal control of tumour-immune model with time-delay and immuno-chemotherapy, Appl. Math. Comput., 353 (2019), 147–165. doi: 10.1016/j.amc.2019.02.002. doi: 10.1016/j.amc.2019.02.002 |
[15] | F. A. Rihan, G. Velmurugan, Dynamics of fractional-order delay differential model for tumor-immune system, Chaos Solitons Fractals, 132 (2020), 109592. doi: 10.1016/j.chaos.2019.109592. doi: 10.1016/j.chaos.2019.109592 |
[16] | F. A. Rihan, D. H. Abdel Rahman, S. Lakshmanan, A. S. Alkhajeh, A time delay model of tumour-immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, Appl. Math. Comput., 232 (2014), 606–623. doi: 10.1016/j.amc.2014.01.111. doi: 10.1016/j.amc.2014.01.111 |
[17] | P. Das, P. Das, S. Mukherjee, Stochastic dynamics of Michaelis-Menten kinetics based tumor-immune interactions, Physica A, 541 (2020), 123603. doi: 10.1016/j.physa.2019.123603. doi: 10.1016/j.physa.2019.123603 |
[18] | P. Das, P. Das, S. Das, An investigation on Monod-Haldane immune response based tumor-effector-interleukin-2 interactions with treatments, Appl. Math. Comput., 361 (2019), 536–551. doi: 10.1016/j.amc.2019.05.032. doi: 10.1016/j.amc.2019.05.032 |
[19] | P. Das, R. K. Upadhyay, P. Das, D. Ghosh, Exploring dynamical complexity in a time-delayed tumor-immune model, Chaos, 30 (2020), 123118. doi: 10.1063/5.0025510. doi: 10.1063/5.0025510 |
[20] | P. Das, S. Mukherjee, P. Das, An investigation on Michaelis-Menten kinetics based complex dynamics of tumor-immune interaction, Chaos Solitons Fractals, 128 (2019), 297–305. doi: 10.1016/j.chaos.2019.08.006. doi: 10.1016/j.chaos.2019.08.006 |
[21] | P. Das, S. Mukherjee, P. Das, S. Banerjee, Characterizing chaos and multifractality in noise-assisted tumor-immune interplay, Nonlinear Dynam., 101 (2020), 675–685. doi: 10.1007/s11071-020-05781-6. doi: 10.1007/s11071-020-05781-6 |
[22] | P. Das, S. Das, P. Das, F. A. Rihan, M. Uzuntarla, D. Ghosh, Optimal control strategy for cancer remission using combinatorial therapy: A mathematical model-based approach, Chaos Solitons Fractals, 145 (2021), 110789. doi: 10.1016/j.chaos.2021.110789. doi: 10.1016/j.chaos.2021.110789 |
[23] | P. Das, S. Das, R. K. Upadhyay, P. Das, Optimal treatment strategies for delayed cancer-immune system with multiple therapeutic approach, Chaos Solitons Fractals, 136 (2020), 109806. doi: 10.1016/j.chaos.2020.109806. doi: 10.1016/j.chaos.2020.109806 |
[24] | K. E. de Visser, A. Eichten, L. M. Coussens, Paradoxical roles of the immune system during cancer development, Nat. Rev. Cancer, 6 (2006), 24–37. doi: 10.1038/nrc1782. doi: 10.1038/nrc1782 |
[25] | J. Xie, T. Zhao, F. Hao, F. He, The effect of time delay on tumor-immune system during tumor growth, J. Med. Biomech., 32 (2017), 319–324. doi: 10.16156/j.1004-7220.2017.04.004 doi: 10.16156/j.1004-7220.2017.04.004 |
[26] | T. Igakura, J. C. Stinchcomeb, P. K. C. Goon, G. P. Taylor, J. N. Weber, G. M. Griffiths, et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton, Sciences, 5613 (2003), 1713–1716. doi: 10.1126/science.1080115. doi: 10.1126/science.1080115 |
[27] | S. Ruan, Nonlinear dynamics in tumor-immune system interaction models with delays, Discrete Cont. Dyn-B, 26 (2021), 541–602. doi: 10.3934/dcdsb.2020282. doi: 10.3934/dcdsb.2020282 |