Research article Special Issues

Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay


  • Received: 17 April 2023 Revised: 11 May 2023 Accepted: 12 May 2023 Published: 17 May 2023
  • A diffusive predator-prey system with advection and time delay is considered. Choosing the conversion delay $ \tau $ as a bifurcation parameter, we find that as $ \tau $ varies, the system will generate Hopf bifurcation. Then, for the reaction diffusion model proposed in this paper, we use an improved center manifold reduction method and normal form theory to derive an algorithm for determining the direction and stability of Hopf bifurcation. Finally, we provide simulations to illustrate the effects of time delay $ \tau $ and advection $ \alpha $ on system behaviors.

    Citation: Honghua Bin, Daifeng Duan, Junjie Wei. Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12194-12210. doi: 10.3934/mbe.2023543

    Related Papers:

  • A diffusive predator-prey system with advection and time delay is considered. Choosing the conversion delay $ \tau $ as a bifurcation parameter, we find that as $ \tau $ varies, the system will generate Hopf bifurcation. Then, for the reaction diffusion model proposed in this paper, we use an improved center manifold reduction method and normal form theory to derive an algorithm for determining the direction and stability of Hopf bifurcation. Finally, we provide simulations to illustrate the effects of time delay $ \tau $ and advection $ \alpha $ on system behaviors.



    加载中


    [1] S. Chen, J. Shi, J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system, Int. J. Bifurcation Chaos, 22 (2012), 1250061. https://doi.org/10.1142/S0218127412500617 doi: 10.1142/S0218127412500617
    [2] T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433–463. https://doi.org/10.1006/jmaa.2000.7182 doi: 10.1006/jmaa.2000.7182
    [3] P. K. Hadeler, Topics in Mathematical Biology, Heidelberg, Springer, 2018. https://doi.org/10.1007/978-3-319-65621-2
    [4] G. Hu, W. Li, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects, Nonlinear Anal. Real World Appl., 11 (2010), 819–826. https://doi.org/10.1016/j.nonrwa.2009.01.027 doi: 10.1016/j.nonrwa.2009.01.027
    [5] M. Wang, Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion, Math. Biosci., 212 (2008), 149–160. https://doi.org/10.1016/j.mbs.2007.08.008 doi: 10.1016/j.mbs.2007.08.008
    [6] X. Yan, Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects, Appl. Math. Comput., 192 (2007), 552–566. https://doi.org/10.1016/j.amc.2007.03.033 doi: 10.1016/j.amc.2007.03.033
    [7] X. Yan, C. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system, Appl. Math. Modell., 34 (2010), 184–199. https://doi.org/10.1016/j.apm.2009.03.040 doi: 10.1016/j.apm.2009.03.040
    [8] R. Yang, C. Zhang, Y. Zhang, A delayed diffusive predator-prey system with Michaelis-Menten type predator harvesting, Int. J. Bifurcation Chaos, 28 (2018), 1850099. https://doi.org/10.1142/S0218127418500992 doi: 10.1142/S0218127418500992
    [9] F. Liu, R. Yang, L. Tang, Hopf bifurcation in a diffusive predator-prey model with competitive interference, Chaos, Solitons Fractals, 120 (2019), 250–258. https://doi.org/10.1016/j.chaos.2019.01.029 doi: 10.1016/j.chaos.2019.01.029
    [10] W. Zuo, J. Wei, Stability and Hopf bifurcation in a diffusive predator-prey system with delay effect, Nonlinear Anal. Real World Appl., 12 (2011), 1998–2011. https://doi.org/10.1016/j.nonrwa.2010.12.016 doi: 10.1016/j.nonrwa.2010.12.016
    [11] G. Hu, W. Li, X. Yan, Hopf bifurcation and stability of periodic solutions in the delayed Lienard equaiton, Int. J. Bifurcation Chaos, 18 (2008), 3147–3157. https://doi.org/10.1142/S0218127408022317 doi: 10.1142/S0218127408022317
    [12] Y. Su, J. Wei, J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect, J. Differ. Equations, 247 (2009), 1156–1184. https://doi.org/10.1016/j.jde.2009.04.017 doi: 10.1016/j.jde.2009.04.017
    [13] Y. Su, J. Wei, J. Shi, Bifurcation analysis in a delayed diffusive Nicholson's blowflies equation, Nonlinear Anal. Real World Appl., 12 (2010), 1692–1703. https://doi.org/10.1016/j.nonrwa.2009.03.024 doi: 10.1016/j.nonrwa.2009.03.024
    [14] Y. Su, A. Wan, J. Wei, Bifurcation analysis in a diffusive food-limited model with time delay, Appl. Anal., 89 (2010), 1161–1181. https://doi.org/10.1080/00036810903116010 doi: 10.1080/00036810903116010
    [15] X. Yan, W. Li, Stability and Hopf bifurcation for a delayed cooperative system with diffusion effects, Int. J. Bifurcation Chaos, 18 (2008), 441–453. https://doi.org/10.1142/S0218127408020434 doi: 10.1142/S0218127408020434
    [16] W. Zuo, J. Wei, Stability and bifurcation analysis in a diffusive Brusselator system with delayed feedback control, Int. J. Bifurcation Chaos, 22 (2011), 1250037. https://doi.org/10.1142/S021812741250037X doi: 10.1142/S021812741250037X
    [17] W. Zuo, Y. Song, Stability and bifurcation analysis of a reaction–diffusion equation with spatio-temporal delay, J. Math. Anal. Appl., 430 (2015), 243–261. https://doi.org/10.1016/j.jmaa.2015.04.089 doi: 10.1016/j.jmaa.2015.04.089
    [18] F. Lutscher, E. McCauley, M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Popul. Biol., 71 (2007), 267–277. https://doi.org/10.1016/j.tpb.2006.11.006 doi: 10.1016/j.tpb.2006.11.006
    [19] O. Vasilyeva, F. Lutscher, How flow speed alters competitive outcome in advective environments, Bull. Math. Biol., 74 (2012), 2935–2958. https://doi.org/10.1007/s11538-012-9792-3 doi: 10.1007/s11538-012-9792-3
    [20] Y. Lou, H. Nie, Y. E. Wang, Coexistence and bistability of a competition model in open advective environments, Math. Biosci., 306 (2018), 10–19. https://doi.org/10.1016/j.mbs.2018.09.013 doi: 10.1016/j.mbs.2018.09.013
    [21] Y. Lou, H. Nie, Global dynamics of a generalist predator-prey model in open advective environments, J. Math. Biol., 84 (2022), 1–40. https://doi.org/10.1007/s00285-022-01756-w doi: 10.1007/s00285-022-01756-w
    [22] J. Liu, J. Wei, On Hopf bifurcation of a delayed predator-prey system with diffusion, Int. J. Bifurcation Chaos, 23 (2013), 1350023. https://doi.org/10.1142/S0218127413500235 doi: 10.1142/S0218127413500235
    [23] E. Beretta, Y. Kuang, Convergence results in a well-known delayed predator-prey system, J. Math. Anal. Appl., 204 (1996), 840–853. https://doi.org/10.1006/jmaa.1996.0471 doi: 10.1006/jmaa.1996.0471
    [24] K. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993. https://doi.org/10.1016/0378-4754(93)90045-V
    [25] S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Model. Nat. Phenom., 4 (2009), 140–188. https://doi.org/10.1051/mmnp/20094207 doi: 10.1051/mmnp/20094207
    [26] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996. https://doi.org/10.1007/978-1-4612-4050-1
    [27] T. Faria, L. T. Magalhães, Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Differ. Equations, 122 (1995), 181–200. https://doi.org/10.1006/jdeq.1995.1144 doi: 10.1006/jdeq.1995.1144
    [28] T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000), 2217–2238. https://doi.org/10.1090/S0002-9947-00-02280-7 doi: 10.1090/S0002-9947-00-02280-7
    [29] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981. http://dx.doi.org/10.1090/conm/445
    [30] K. L. Cooke, Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86 (1982), 592–627. https://doi.org/10.1016/0022-247X(82)90243-8 doi: 10.1016/0022-247X(82)90243-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1820) PDF downloads(160) Cited by(4)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog