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Abstract: A diffusive predator-prey system with advection and time delay is considered. Choosing
the conversion delay τ as a bifurcation parameter, we find that as τ varies, the system will generate
Hopf bifurcation. Then, for the reaction diffusion model proposed in this paper, we use an improved
center manifold reduction method and normal form theory to derive an algorithm for determining the
direction and stability of Hopf bifurcation. Finally, we provide simulations to illustrate the effects of
time delay τ and advection α on system behaviors.
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1. Introduction

To present a more realistic dynamic behavior in the predator-prey model, it is necessary to consider
the addition of time delay and spatial distribution of the population in the ecosystem when modeling.
Time delays play a crucial role in the stability or instability of prey and predators’ densities. Therefore,
predator-prey models with diffusion and time delay have received widespread attention, see [1–10].
There have been some articles introducing the bifurcation theory of delayed reaction-diffusion models
describing biological or chemical reactions, see [11–17].

Due to natural phenomena such as crustal movement, volcanic eruption or human migration activ-
ities, the flow rate of aquatic animal habitats will change dramatically over time. This will change
the dominant position of the species, which may lead to a population from occupying absolute advan-
tage to coexisting with other species, or going extinct. Therefore, exploring how water flow velocity
regulates the coexistence of two species is an important topic [18–21]. In summary, we establish the
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following predator-prey model with time delay, diffusion, and advection.
∂u(x,t)
∂t = d ∂2u(x,t)

∂x2 − α
∂u(x,t)
∂x + u(x, t)[a − bu(x, t) − cv(x, t)], x ∈ (0, L), t > 0,

∂v(x,t)
∂t = εd ∂2v(x,t)

∂x2 − εα
∂v(x,t)
∂x + γv(x, t)[u(x, t − τ) − β], x ∈ (0, L), t > 0,

d ∂u(0,t)
∂x − αu(0, t) = −αβ, u(L, t) = β, t ≥ 0,

d ∂v(0,t)
∂x − αv(0, t) = −α a−bβ

c , v(L, t) =
a−bβ

c , t ≥ 0,

(1.1)

where d, ε, α, a, b, c, τ, γ and β all represent nonnegative constants, α and εα are the advection transport
velocities of the prey and predator, respectively. The specific biological significance of other param-
eters can be found in reference [22]. We should point out that the diffusion coefficients (advection
transport velocities) are proportionate is a need of mathematical technique.

We would like to mention that the model (1.1) with d = α = 0 has been analysed by several
researchers, see [23–25]. When α = 0, taking the conversion rate γ from prey to predator as the
bifurcation parameter, Wu [26] gave the existence of Hopf bifurcation under the Neumann boundary.
In addition, under the Dirichlet boundary condition, Liu and Wei [22] studied the properties of Hopf
bifurcation by selecting other parameters. In 2001, Faria [2] extended the normal form method in [27–
29] to a class of predator-prey systems with delay, diffusion and Neumann boundary conditions. Due to
incorporating the advection term into the predator-prey system, we must extend the method proposed
by Faria. Based on this idea, we derived an algorithm to determine the properties of Hopf bifurcation,
provided the direction of Hopf bifurcation and the stability and instability of the bifurcation periodic
solution. When solving eigenvalue problems, the specific form of the eigenvalue cannot be directly
calculated, so we use {µn}n≥1 to represent it, and the minimum eigenvalue is not 0. The corresponding
characteristic functions become more complex in form compared to those without convection terms.
The Laplace operator is self-adjoint, and the operator after considering advection is non self-adjoint.
In the process of using the normal form method, we represented it with Aν and recalculated the adjoint
operator A∗ν by combining linear equations and boundary conditions. We also investigated the impact of
advection rate on the system, with advection rate α and time delay τ as the main parameters. Our main
findings are that, due to factors such as diffusion, advection, and time delay, the system can generate
Hopf bifurcation under mode-1, where the stable steady-state solution becomes unstable and generates
spatially non-uniform oscillations.

The structure of the remaining chapters is arranged as follows. In Sections 2 and 3, we derived an
algorithm that can determine the direction of Hopf bifurcation and whether the bifurcation periodic
solutions are stable or not of model (1.1). In Section 4, we found that the system generates spatially
non-uniform oscillations under the mode-1. In addition, under the influence of advection, the system
may exhibit spatial non-homogeneous periodic oscillations or steady-state solutions.

2. Stability of positive steady state and existence of Hopf bifurcations

Obviously, the model (1.1) has a unique constant positive steady state (β, (a − bβ)/c) when a > bβ.
To ensure that the steady-state solution has a biological explanation, we assume

(H1) a > bβ.

For the convenience of calculations, let ũ = u − β, ṽ = v − (a − bβ)/c. Furthermore, to simplify the
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symbols, remove the wavy lines on u and v. Then (1.1) becomes
∂u
∂t = d ∂2u

∂x2 − α
∂u
∂x − bβu − cβv − bu2 − cuv, x ∈ (0, L), t > 0,

∂v
∂t = εd ∂2

∂x2 − εα
∂v
∂x +

γ(a−bβ)
c u(x, t − τ) + γu(x, t − τ)v, x ∈ (0, L), t > 0,

d ∂u(0,t)
∂x − αu(0, t) = 0, u(L, t) = 0, t ≥ 0,

d ∂v(0,t)
∂x − αv(0, t) = 0, v(L, t) = 0, t ≥ 0.

(2.1)

The linearization of (2.1) around the origin is∂u
∂t = d ∂2u

∂x2 − α
∂u
∂x − bβu − cβv, x ∈ (0, L), t > 0,

∂v
∂t = εd ∂2v

∂x2 − εα
∂v
∂x +

γ(a−bβ)
c u(x, t − τ), x ∈ (0, L), t > 0,

(2.2)

Define the real-valued Sobolev space

X := {(φ, ψ) ∈ H2(0, L) × H2(0, L)|d
∂φ(0)
∂x

− αφ(0) = 0, φ(L) = 0, d
∂ψ(0)
∂x

− αψ(0) = 0, ψ(L) = 0},

and
XC = X ⊕ iX = {y1 + iy2|y1, y2 ∈ X}.

We have known that the eigenvalues of following problemd ∂2ϕ(x)
∂x2 − α

∂ϕ(x)
∂x = −µϕ(x)

d ∂ϕ(0)
∂x − αϕ(0) = 0, ϕ(L) = 0,

(2.3)

are given by {µn}n≥1 with
α2

4d
< µ1 < · · · < µn < µn+1 < · · · ,

and limn→∞ µn = ∞. For each n, the following equation

tan
L
√

dµ − α2

4

d
= −

2
√

dµ − α2

4

α
. (2.4)

can determine µn. The associated eigenfunction of µk is

bk =
ϕk

‖ϕk‖
, (2.5)

where

ϕk = e
α
2d x

(
cos

√
dµk −

α2

4

d
x +

α

2
√

dµk −
α2

4

sin

√
dµk −

α2

4

d
x
)
, k = 1, 2, · · · ,

and

‖ϕk‖ =

( ∫ L

0
ϕ2

kdx
) 1

2

.
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Then the characteristic equations of (2.2) are given by

det(λId +

(
µk + bβ cβ
−
γ(a−bβ)

c e−λτ εµk

)
) = 0, k = 1, 2, · · · .

That is
λ2 + Tkλ + Dk + γβ(a − bβ)e−λτ = 0, k = 1, 2, · · · , (2.6)

where 
Tk = (1 + ε)µk + bβ,

Dk = εµk(µk + bβ),
k = 1, 2, · · · .

Clearly, Tk > 0 and Dk > 0 when k ≥ 1. In the case of τ = 0, all the roots of (2.6) have negative real
parts. Therefore, the system has a locally stable steady-state solution. Let ±iω (ω > 0) be the roots of
Eq (2.6). Then we have

−ω2 + iωTk + Dk + γβ(a − bβ)(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts, we obtain−ω2 + Dk + γβ(a − bβ) cosωτ = 0,
ωTk − γβ(a − bβ) sinωτ = 0.

(2.7)

It follows from (2.7) that

ω4 + (T 2
k − 2Dk)ω2 + D2

k − (γβ(a − bβ))2 = 0. (2.8)

From
T 2

k − 2Dk = ε2µ2
k + (µk + bβ)2 > 0,

the roots of the Eq (2.8) are given by

ω2 =
1
2

[−(T 2
k − 2Dk) +

√
(T 2

k − 2Dk)2 − 4(D2
k − (γβ(a − bβ))2)]. (2.9)

Clearly, (2.9) does not make sense when Dk ≥ γβ(a − bβ), k ≥ 1(i.e., D1 ≥ γβ(a − bβ)). That is,
(2.6) has no purely imaginary roots when a ≤ bβ + D1

γβ
. Meanwhile, it follows from limk→∞ Dk = ∞

that, if a > bβ + D1
γβ

, there exists an integer k0 > 1 such that (2.9) makes sense for 1 ≤ k < k0, and does
not when k ≥ k0. Combining with that all the roots of Eq (2.6) with τ = 0 have negative real parts, and
the zero is not a root of Eq (2.6), we have the following conclusions.

Lemma 1. Suppose (H1) is satisfied.
(i) If a ∈ (bβ, bβ + D1

γβ
], then all the roots of Eq (2.6) have negative real parts for all τ ≥ 0;

(ii) If a > bβ + D1
γβ

, then there exists an integer k0 > 1 such that (2.9) makes sense for 1 ≤ k < k0, and
does not for k ≥ k0.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12194–12210.



12198

We make the following assumption:

(H2)

a > bβ + D1
γβ
, k0 is the ingeger so that (2.9) makes sense

for 1 ≤ k < k0, and does not when k ≥ k0.

Under the hypothesis (H2) , we define

τ
( j)
k =

1
ωk

[arcsin
ωkTk

γβ(a − bβ)
+ 2 jπ], k = 1, 2, · · · , k0 − 1; j = 0, 1, · · · . (2.10)

In fact, from the first equation in (2.7), we have ωkτ
(0)
k ∈ (0, π2 ] when ω2

k −Dk ≥ 0, and ωkτ
(0)
k ∈ (π2 , π)

when ω2
k − Dk < 0.

So far, we have know that ±iωk are a pair of imaginary roots of Eq (2.6) with

τ = τ
( j)
k , k = 1, 2, · · · , k0 − 1; j = 0, 1, · · · .

Set λ(τ) as the root of Eq (2.6) satisfying Reλ(τ( j)
k ) = 0 and Imλ(τ( j)

k ) = ωk.

Lemma 2. Suppose (H1) and (H2) are established. Then d
dτReλ(τ( j)

k ) > 0.

The proof of the lemma can be found in [30].
Denote τ0 = min1≤k≤k0−1{τ

(0)
k } and let the corresponding purely imaginary roots be ±iω0 . Then we

provide the following results for the distribution of the roots of Eq (2.6).

Lemma 3. Suppose (H1) and (H2) are established. Then all the roots of Eq (2.6) have negative real
parts when τ ∈ [0, τ0), the other roots of Eq (2.6) with τ = τ0, except the imaginary roots ±iω0, have
negative real parts, and Eq (2.6) has at least a couple of roots with positive real parts when τ > τ0.

Applying Lemmas 1–3, we have the following conclusions on the dynamics of the model (1.1).

Theorem 1. (i) If a ∈ (bβ, bβ + D1
γβ

], then (β, a−bβ
c ) is locally asymptotically stable when τ ≥ 0.

(ii) If (H1) and (H2) are established, then (β, a−bβ
c ) is locally asymptotically stable when τ ∈ [0, τ0),

and unstable for τ > τ0; meanwhile, the model (1.1) undergoes the Hopf bifurcation at (β, a−bβ
c ) when

τ = τ(m)
k , k = 1, 2, · · · , k0 − 1; m = 0, 1, 2, · · · .

3. Stability and direction of bifurcating periodic solutions

We shall investigate the direction of the Hopf bifurcation and the stability of the periodic solutions
bifurcating from τ0. We introduce the variables changes:

y1(x, t) = u(x, τt), y2(x, t) = v(x, τt) and τ = τ0 + ν.

Then system (2.1) can be rewritten as

∂y1(x,t)
∂t = (τ0 + ν)[d ∂2y1(x,t)

∂x2 − α∂y1(x,t)
∂x − bβy1(x, t)

− cβy2(x, t) − by2
1(x, t) − cy1(x, t)y2(x, t)], x ∈ (0, L), t > 0,

∂y2(x,t)
∂t = (τ0 + ν)[εd ∂2y2(x,t)

∂x2 − εα∂y2(x,t)
∂x

+
γ(a−bβ)

c y1(x, t − 1) + γy1(x, t − 1)y2(x, t)], x ∈ (0, L), t > 0,
d ∂y1(0,t)

∂x − αy1(0, t) = 0, y1(L, t) = 0, t ≥ 0,
d ∂y2(0,t)

∂x − αy2(0, t) = 0, y2(L, t) = 0, t ≥ 0.

(3.1)
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By the results obtained in the previous section, we know that the system (3.1) undergoes a Hopf
bifurcation at the origin when ν = 0. Meanwhile, when ν = 0, the characteristic equation of (3.1) has a
pair of simple purely imaginary roots ±iτ0ω0 and all the other roots, except the pure imaginary roots,
have negative real parts.

Denote
C := C([−1, 0]; X), C := C([−1, 0];R2), C∗ := C([0, 1];R2),

and Ut ∈ C for Ut(θ) = U(t + θ) ∈ X, −1 ≤ θ ≤ 0. Let

φ = (φ(1), φ(2))T ∈ C, D(ν) = (τ0 + ν)
(
d 0
0 εd

)
, M(ν) = (τ0 + ν)

(
α 0
0 εα

)
,

and denote

Lν(φ) = (τ0 + ν)[
(
−bβ −cβ

0 0

)
φ(0) +

(
0 0

γ(a−bβ)
c 0

)
φ(−1)],

F(ν, φ) = (τ0 + ν)
(
−b(φ(1)(0))2 − cφ(1)(0)φ(2)(0)

γφ(1)(−1)φ(2)(0)

)
.

Then in C, the system (3.1) has the form

d
dt

U(t) = D(ν)∆U(t) − M(ν)∇U(t) + Lν(Ut) + F(ν,Ut), (3.2)

where

U(t) = (y1(x, t), y2(x, t))T , D(ν)∆ = (τ0 + ν)
(
d∆ 0
0 εd∆

)
and M(ν)∇ = (τ0 + ν)

(
α∇ 0
0 εα∇

)
.

We also know that ±iτ0ω0 are pure imaginary eigenvalues of linear equations of (3.2) at (0, 0), the
linear equation is as follows.

d
dt

U(t) = D(ν)∆U(t) − M(ν)∇U(t) + Lν(Ut). (3.3)

The infinitesimal generator Aν is given by

Aνφ =

φ̇(θ) θ ∈ [−1, 0),
D(ν)∆φ(0) − M(ν)∇φ(0) + Lν(φ) θ = 0.

(3.4)

Denote βk = {(bk, 0)T , (0, bk)T }, where bk is defined by (2.5). Then {βk}
∞
k=1 form an orthogonal basis

for X. For φ = (φ
(1)
, φ

(2)
)T ∈ C, let

φk = 〈φ, βk〉 = (〈φ
(1)
, bk〉, 〈φ

(2)
, bk〉)T ∈ C([−1, 0];R2).

Then φ =
∑∞

k=1 φkbk. For φkbk, we have

Lν(φkbk) = K1φk(0)bk + K2φk(−1)bk, k = 1, 2, · · · ,

and
D(ν)∆φk(0)bk − M(ν)∇φk(0)bk = −µkK3φk(0)bk k = 1, 2, · · · ,

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12194–12210.
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where

K1 = (τ0 + ν)
(
−bβ −cβ

0 0

)
, K2 = (τ0 + ν)

(
0 0

γ(a−bβ)
c 0

)
, K3 = (τ0 + ν)

(
1 0
0 ε

)
. (3.5)

Then it follows that

D(ν)∆φk(0)bk − M(ν)∇φk(0)bk + Lν(φk(−1)bk) = (−µkK3φk(0) + K1φk(0) + K2φk(−1))bk, k = 1, 2, · · · .

Define
Lk,ν(φ) = −µkK3φ(0) + K1φ(0) + K2φ(−1), for φ ∈ C.

According to the Riesz representation theorem, there exists a matrix ηk(ν, θ) in θ ∈ [−1, 0] that
satisfies the following expression:

Lk,ν(φ) =

∫ 0

−1
dηk(ν, θ)φ(θ), k = 1, 2, · · · . (3.6)

Let

ηk(ν, θ) =


−K2 θ = −1,
0 θ ∈ (−1, 0),
K1 − µkK3 θ = 0,

k = 1, 2, · · · . (3.7)

Then (3.6) is satisfied. Hence, (3.4) can be rewritten in the following form:

Aνφ(θ) =


∑∞

k=1 φ̇k(θ)bk, θ ∈ [−1, 0),∑∞
k=1

∫ 0

−1
dηT

k (ν, s)φk(s)bk, θ = 0.
(3.8)

Since Aϕ = dϕxx − αϕ(x),
dϕx(0) − αϕ(0) = 0, ϕ(L) = 0,

let A∗ be the adjoint operator of A, we have

〈ψ, Aϕ〉 = 〈A∗ψ, ϕ〉.

Hence, A∗ satisfies A∗ψ = dψxx + αψx,

ψx(0) = 0, ψ(L) = 0.
(3.9)

Similar to the method used to solve Eq (2.3), we provide the solution for (3.9):

ψk = e−
α
2d x

(
cos

√
dµk −

α2

4

d
x +

α

2
√

dµk −
α2

4

sin

√
dµk −

α2

4

d
x
)
, k = 1, 2, · · · ,

The associated eigenfunction is

b̃k =
ψk

‖ψk‖
, (3.10)
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Define C∗ = C([0, 1]; X) and a bilinear form (·, ·) on C∗ × C:

(ψ, φ) =

∞∑
k, j=1

(ψk, φ j)c

∫ L

0
b̃kb jdx, (3.11)

where ψ =
∞∑

k=1
ψkb̃k ∈ C

∗, φ =
∞∑

k=1
φkbk ∈ C, and φk ∈ C, ψk ∈ C∗ (k = 1, 2, · · · ) are the “coordinate” of

the component of φ, ψ. From the definition of bk, we have

〈b̃k, b j〉 =

∫ L

0
b̃kb jdx = 0, k , j.

Thus the bilinear form is

(ψ, φ) =

∞∑
k=1

(ψk, φk)c

∫ L

0
b̃kbkdx, , (3.12)

where (·, ·)c is defined on C∗ ×C:

(ψk, φk)c = ψk(0)φk(0) −
∫ 0

−1

∫ θ

ξ=0
ψk(ξ − θ)dηk(ν, θ)φk(ξ)dξ, k = 1, 2, · · · , (3.13)

where ηk(ν, θ), k = 1, 2, · · · are defined as (3.7). Therefore, we get the adjoint operator A∗ν of Aν as
(A∗νψ, φ) = (ψ, Aνφ), such that

A∗νψ(s) =

−
∑∞

k=1 ψ̇k(s)b̃k = −ψ̇(s), s ∈ (0, 1];∑∞
k=1

∫ 0

−1
dηT

k (ν, s)ψk(−s)b̃k, s = 0.

In the following, for a detailed calculation process, please refer to the Appendix. Here we give the
main conclusions. The two key values µ2 and β2 are calculated as follows.

c2(0) =
i

2ω0τ0

(
G11G20 − 2|G11|

2 −
|G02|

2

3

)
+

G21

2
,

ν2 = −
Re(c2(0))
Re(λ′(τ0))

,

β2 = 2Re(c2(0)).

As is well known, if ν2 > 0(< 0), the Hopf bifurcation is forward (backward) and the bifurcating
periodic solutions are orbitally stable (unstable) if β2 < 0(> 0). When τ > τ0(< τ0), the bifurcating
periodic solutions appear.

4. Numerical simulations

In order to better explain the theoretical results, we give some numerical calculation results.
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4.1. The effect of time delay

The parameters in model (1.1) are selected as follows.

(D) d = 0.1, ε = 2, α = 0.2, a = 0.7, b = 1, c = 1.2, γ = 2.8, β = 0.35, L = 3.

According to (2.4), we get

µ1 ≈ 0.1670, µ2 ≈ 0.4043, µ3 ≈ 0.8479, µ4 ≈ 1.5078, . . . .

In addition, we can calculate that

a − bβ −
D1

γβ
≈ 0.2682, a − bβ −

D2

γβ
≈ −0.2723,

which implies that the condition (H2) is satisfied, where k0 = 2. Then from (2.9) and (2.10) we have

ω1 ≈ 0.4029, τ(0)
1 ≈ 3.9742.

Clearly, τ0 = τ(0)
1 ≈ 3.9742. Furthermore, by using the formula given in the (3.14), we compute

c2(0) ≈ −2.167 − 0.2811i, ν2 ≈ 104.3416, β2 ≈ −4.334.

We first presented a bifurcation diagram of advection rate and time delay, with shaded areas rep-
resenting stable regions, see Figure 1. We found that as α increases, the area of stable regions also
increases. By Theorem 1, we have the followings: Under the data (D), the positive steady state
(0.35, 0.2917) of model (1.1) is asymptotically stable for τ ∈ [0, 3.9742), see Figure 2. Mean-
while, the model (1.1) undergoes a Hopf bifurcation at the positive steady state (0.35, 0.2917) when
τ = τ0 ≈ 3.9742. Since ν2 > 0 and β2 < 0, the direction of the Hopf bifurcation is forward, that is, the
periodic solutions exist for τ > τ0, and the bifurcating periodic solutions are orbitally asymptotically
stable, see Figure 3.
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20
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Figure 1. The bifurcation diagram of α and τ.
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Figure 2. For model (0.35, 0.2917) is asymptotically stable when τ ∈ [0, 3.9742), where
τ = 2.4 < τ0, and the initial functions are (0.35 − 0.001 cos x, 0.2917 − 0.001 cos x).
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0.3
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0.36
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0.4

u(1,t)

v(
1,
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Figure 3. For model (1.1) with the data (D), the spatially nonhomogeneous periodic solu-
tion bifurcated from the positive steady state (0.35, 0.2917) is orbitally asymptotically stable,
where τ = 4.8 > τ0 ≈ 3.9742, and the initial functions are (0.35 − 0.001 cos x, 0.2917 −
0.001 cos x).

4.2. The effect of advection

In this section, we will discuss the impact of the advection rate on population size and explore the
rules of population change when the rate changes. When the time delay τ is constant, the stable region
of the system expands as the advection rate increases. When we fix τ to 3.8, other parameters are
still selected from (D). Starting from 0, α increases, causing the gathering position of the predator to
move downstream. At this point, the system has a spatially nonhomogeneous periodic solution. When
α = 0.28, it helps to maintain the stability of the coexistence state of the system. Let’s take the predator
as an example, and use Figure 4 to illustrate the change.
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Figure 4. The change rule of predator quantity when α increases. (a) α = 0; (b) α = 0.1; (c)
α = 0.28.

5. Conclusions

We generalize the normal form theory of the reaction-diffusion equation. Under Neumann boundary
conditions, we find that the eigenvalue mu cannot directly give a specific form. For a delayed predator-
prey model with diffusion and advection, mode-n starts at least from mode-1. Taking time delay as the
bifurcation parameter, when τ exceeds the critical value, we discover spatial inhomogeneous periodic
oscillations induced by time delay. In addition, we also found that advection can cause oscillations in
the system that are influenced by both time and space.
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and
A∗q̂∗(s)bk = iτ0ω0q̂∗(s)b̃k.

Obviously,

Aq(0)bk =

∫ 0

−1
dηk(0, θ)q(θ)bk,

A∗q̂∗(0)b̃k =

∫ 0

−1
dηT

k (0, s)q̂∗(−s)b̃k.

(A.1)

By calculation, we get

q(0) = (1, q1)T , q̂∗(0) = M(1, q∗2),

where

q1 = −
iω0 + µk + bβ

cβ
, q∗2 = −

cβ
iω0 + εµk

,

M =
[
1 + q∗2q1 + τ0q∗2e−iτ0ω0

γ(a − bβ)
c

]−1
.

We choose Ψ = (Ψ1,Ψ2)T = (Ψ∗,Φ)−1
n0

Ψ∗ such that (Ψ∗,Φ)n0 = I2, where I2 is a 2×2 identity matrix.
Then the center subspace of the linear equation (3.3) with ν = 0 is given by PCNC, where

PCNϕ = ϕ(Ψ, 〈ϕ, βk0〉) · βk0

for Ψ ∈ C, here βk = (β1
k , β

2
k) and c · βk = c1β

1
k + c2β

2
k for any c = (c1, c2)T ∈ C. According to [26], when

ν = 0, the flow of system (3.2) is as follows.

(x1(t), x2(t))T = (Ψ, 〈Ut, βk0〉)k0 ,

Ut = Φ(x1(t), x2(t))T · βk0 + h(x1, x2, 0), (A.2)

(
ẋ1(t)
ẋ2(t)

)
=

(
0 ω0τ0

−ω0τ0 0

) (
x1(t)
x2(t)

)
+ Ψ(0)〈F(Ut, 0), βk0〉, (A.3)

with h(0, 0, 0) = 0 and Dh(0, 0, 0) = 0. Let z = x1 − ix2 and Ψ(0) = (Ψ1(0),Ψ2(0))T . We know that
q = Φ1 + iΦ2, then (A.2) can be transformed into

Ut =
1
2

(qz + q̄z̄) · βk0 + W(z, z̄), (A.4)

with W(z, z̄) = h( z+z̄
2 ,

i(z−z̄)
2 , 0). Combining (A.3) and formula (A.4), we know that z should satisfy

ż = iω0τ0z + g(z, z̄), (A.5)

where

g(z, z̄) = (Ψ1(0) − iΨ2(0))〈F(Ut, 0), βk0〉 = (Ψ1(0) − iΨ2(0))〈F(Ut, 0), βk0〉 (A.6)
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Let

g(z, z̄) = G20
z2

2
+ G11zz̄ + G02

z̄2

2
+ G21

z2z̄
2

+ · · · ,

W(z, z̄) = W20
z2

2
+ W11zz̄ + W02

z̄2

2
+ · · · .

(A.7)

From (A.2), (A.4) and (A.5), we have

G20 = 2τ0M(−b − cq1 + γq1q∗2e−iω0τ0)
∫ L

0
b2

k0
b̃k0dx,

G02 = G20,

G11 = τ0M[−2b − c(q1 + q̄1) + q∗2γ(q1eiω0τ0 + q̄1e−iω0τ0)]
∫ L

0
b2

k0
b̃k0dx,

G21 = 2τ0M
∫ L

0
Qbk0 b̃k0dx

where

Q = −b
(
W (1)

20 (0) + 2W (1)
11 (0)

)
− c

(
W (2)

11 (0) +
W (2)

20 (0)
2

+
W (1)

20 (0)
2

q̄1 + q1W (1)
11 (0)

)
+ q∗2γ

(
q1W (1)

11 (−1) +
W (1)

20 (−1)
2

q̄1 +
W (2)

20 (0)
2

eiω0τ0 + W (2)
11 (0)e−iω0τ0

)
To obtain G21, we need to calculate W20(θ) and W11(θ) (θ ∈ [−1, 0]). AU is the generator of the

semigroup, which is generated by the linear system (3.3) with ν = 0. According to (A.4) and (A.5), we
have

Ẇ = U̇t −
1
2

(qż + q̄˙̄z) · βk0

=

AUW − 1
2 (q(θ)g(z, z̄) + q̄(θ)ḡ(z, z̄)) · βk0 , θ ∈ [−1, 0),

AUW − 1
2 (q(θ)g(z, z̄) + q̄(θ)ḡ(z, z̄)) · βk0 + F

(
0, 1

2 (qz + q̄z̄) · βk0 + W(z, z̄)
)
, θ = 0,

= AUW + H(z, z̄, θ),

(A.8)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · .

Denote

F
(
0,

1
2

(qz + q̄z̄) · βk0 + W(z, z̄)
)

= fz2
z2

2
+ fzz̄zz̄ + fz̄2

z̄2

2
+ · · · .

Therefore,

H20(θ) =

−1
2 (q(θ)g20 + q̄(θ)ḡ02) · βk0 , θ ∈ [−1, 0),
−1

2 (q(θ)g20 + q̄(θ)ḡ02) · βk0 + fz2 , θ = 0,
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H11(θ) =

−1
2 (q(θ)g11 + q̄(θ)ḡ11) · βk0 , θ ∈ [−1, 0),
−1

2 (q(θ)g11 + q̄(θ)ḡ11) · βk0 + fzz̄, θ = 0,

Notice that

Ẇ =
∂W(z, z̄)
∂z

ż +
∂W(z, z̄)
∂z̄

˙̄z.

From (A.7) and (A.8), we haveH20 = (2iω0τ0 − AU)W20,

H11 = −AUW11.
(A.9)

Since 2iω0τ0 and 0 are not eigenvalues of (3.3), the system (A.9) has unique solutions W20 and W11

in PSC, which are given by W20 = (2iω0τ0 − AU)−1H20,

W11 = −A−1
U H11.

(A.10)

By (A.10), we obtain

W20(θ) =
−G20

iω0τ0
q(0)eiω0τ0θbk −

Ḡ02

3iω0τ0
q̄(0)e−iω0τ0θbk + E1e2iω0τ0θ,

W11(θ) =
G11

iω0τ0
q(0)eiω0τ0θbk −

Ḡ11

iω0τ0
q̄(0)e−iω0τ0θbk + E2,

Denote

E1 =

∞∑
k=1

Ek
1bk, E2 =

∞∑
n=1

Ek
2bk,

Ek
1 and Ek

2 can be calculated by

Ek
1 =

(
2iω0τ0I −

∫ 0

−1
e2iω0τ0θdηk(0, θ)

)−1

〈 fz2 , βk〉,

= τ−1
0

(
2iω0 + µk + bβ cβ
−
γ(a−bβ)

c e−2iω0τ0 2iω0 + εµk

)−1

〈 fz2 , βk〉,

with

〈 fz2 , βk〉 = 2
(
−b − cq1

γq1e−iω0τ0

) ∫ L

0
b2

k0
bkdx.
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Ek
2 = −

( ∫ 0

−1
dηk(0, θ)

)−1

〈 fzz̄, βk〉,

= τ−1
0

(
µk + bβ cβ
−
γ(a−bβ)

c εµk

)−1

〈 fzz̄, βk〉, k = 1, 2, · · · .

with

〈 fzz̄, βk〉 =

(
−2b − c(q1 + q̄1)

γ(q1eiω0τ0 + q̄1e−iω0τ0)

) ∫ L

0
b2

k0
bkdx.

Therefore, W20(θ) and W11(θ) can be obtained, the expression of G21 is also obtained.
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