Research article Special Issues

An improved immune algorithm with parallel mutation and its application


  • Received: 28 February 2023 Revised: 10 April 2023 Accepted: 08 May 2023 Published: 17 May 2023
  • The objective of this paper is to design a fast and efficient immune algorithm for solving various optimization problems. The immune algorithm (IA), which simulates the principle of the biological immune system, is one of the nature-inspired algorithms and its many advantages have been revealed. Although IA has shown its superiority over the traditional algorithms in many fields, it still suffers from the drawbacks of slow convergence and local minima trapping problems due to its inherent stochastic search property. Many efforts have been done to improve the search performance of immune algorithms, such as adaptive parameter setting and population diversity maintenance. In this paper, an improved immune algorithm (IIA) which utilizes a parallel mutation mechanism (PM) is proposed to solve the Lennard-Jones potential problem (LJPP). In IIA, three distinct mutation operators involving cauchy mutation (CM), gaussian mutation (GM) and lateral mutation (LM) are conditionally selected to be implemented. It is expected that IIA can effectively balance the exploration and exploitation of the search and thus speed up the convergence. To illustrate its validity, IIA is tested on a two-dimension function and some benchmark functions. Then IIA is applied to solve the LJPP to exhibit its applicability to the real-world problems. Experimental results demonstrate the effectiveness of IIA in terms of the convergence speed and the solution quality.

    Citation: Lulu Liu, Shuaiqun Wang. An improved immune algorithm with parallel mutation and its application[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12211-12239. doi: 10.3934/mbe.2023544

    Related Papers:

  • The objective of this paper is to design a fast and efficient immune algorithm for solving various optimization problems. The immune algorithm (IA), which simulates the principle of the biological immune system, is one of the nature-inspired algorithms and its many advantages have been revealed. Although IA has shown its superiority over the traditional algorithms in many fields, it still suffers from the drawbacks of slow convergence and local minima trapping problems due to its inherent stochastic search property. Many efforts have been done to improve the search performance of immune algorithms, such as adaptive parameter setting and population diversity maintenance. In this paper, an improved immune algorithm (IIA) which utilizes a parallel mutation mechanism (PM) is proposed to solve the Lennard-Jones potential problem (LJPP). In IIA, three distinct mutation operators involving cauchy mutation (CM), gaussian mutation (GM) and lateral mutation (LM) are conditionally selected to be implemented. It is expected that IIA can effectively balance the exploration and exploitation of the search and thus speed up the convergence. To illustrate its validity, IIA is tested on a two-dimension function and some benchmark functions. Then IIA is applied to solve the LJPP to exhibit its applicability to the real-world problems. Experimental results demonstrate the effectiveness of IIA in terms of the convergence speed and the solution quality.



    加载中


    [1] A. Kumar, M. Nadeem, H. Banka, Nature inspired optimization algorithms: a comprehensive overview, Evol. Syst., 14 (2023), 141–156. https://doi.org/10.1007/s12530-022-09432-6 doi: 10.1007/s12530-022-09432-6
    [2] K. Worden, W. J. Staszewski, J. J. Hensman, Natural computing for mechanical systems research: A tutorial overview, Mech. Syst. Signal Process., 25 (2011), 4–111. https://doi.org/10.1016/j.ymssp.2010.07.013 doi: 10.1016/j.ymssp.2010.07.013
    [3] S. C. Gao, Z. Tang, H. W. Dai, J. Zhang, An improved clonal algorithm and its application to traveling salesman problems, IEICE Trans. Fundam., E90-A (2007), 2930–2938. https://doi.org/10.1093/ietfec/e90-a.12.2930 doi: 10.1093/ietfec/e90-a.12.2930
    [4] Y. Yang, H. Dai, S. C. Gao, Y. R. Wang, D. B. Jia, Z. Tang, Complete receptor editing operation based on quantum clonal selection algorithm for optimization problems, IEEJ Trans. Electr. Electron. Eng., 14 (2018), 411–421. https://doi.org/10.1002/tee.22822 doi: 10.1002/tee.22822
    [5] A. S. Muhamad, S. Deris, An artificial immune system for solving production scheduling problems: a review, Artif. Intell. Rev., 39 (2013), 1–12. https://doi.org/10.1007/s10462-011-9259-1 doi: 10.1007/s10462-011-9259-1
    [6] F. M. Burnet, The Clonal Selection Theory of Acquired Immunity, Cambridge Press, 1959.
    [7] G. J. V. Nossal, Negative selection of lymphocytes, Cell, 76 (1994), 229–239. https://doi.org/10.1007/978-1-4020-6754-9-11239 doi: 10.1007/978-1-4020-6754-9-11239
    [8] A. Perelson, Immune network theory, Immunol. Rev., 110 (1989), 5–36. https://doi.org/10.1111/j.1600-065X.1989.tb00025.x doi: 10.1111/j.1600-065X.1989.tb00025.x
    [9] P. Matzinger, The danger model: a renewed sense of self, Science, 296 (2002), 301–305. https://doi.org/10.1126/science.1071059 doi: 10.1126/science.1071059
    [10] F. Gu, J. Greensmith, U. Aickelin, Theoretical formulation and analysis of the deterministic dendritic cell algorithm, Biosystems, 111 (2013), 127–135. https://doi.org/10.1016/j.biosystems.2013.01.001 doi: 10.1016/j.biosystems.2013.01.001
    [11] S. C. Gao, H. W. Dai, G. Yang, Z. Tang, A novel clonal selection algorithm and its application to traveling salesman problems, IEICE Trans. Fundam., E90A (2007), 2318–2325. https://doi.org/10.1093/ietfec/e90-a.10.2318 doi: 10.1093/ietfec/e90-a.10.2318
    [12] B. H. Ulutas, S. Kulturel-Konak, A review of clonal selection algorithm and its applications, Artif. Intell. Rev., 36 (2011), 117–138.
    [13] L. N. De Castro, F. J. Von Zuben, Learning and optimization using the clonal selection principle, IEEE Trans. Evol. Comput., 6 (2002), 239–251. https://doi.org/10.1109/TEVC.2002.1011539 doi: 10.1109/TEVC.2002.1011539
    [14] R. Shang, L. Jiao, F. Liu, W. Ma, A novel immune clonal algorithm for mo problems, IEEE Trans. Evol. Comput., 16 (2012), 35–50. https://doi.org/10.1109/TEVC.2010.2046328 doi: 10.1109/TEVC.2010.2046328
    [15] Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Control Syst. Technol., 3 (2012), 763–769. https://doi.org/10.1109/TCST.2011.2153203 doi: 10.1109/TCST.2011.2153203
    [16] P. A. D. Castro, F. J. Von Zuben, Learning ensembles of neural networks by means of a bayesian artificial immune system, IEEE Trans. Neural Networks, 22 (2011), 304–316. https://doi.org/10.1109/TNN.2010.2096823 doi: 10.1109/TNN.2010.2096823
    [17] G. Dudek, An artificial immune system for classification with local feature selection, IEEE Trans. Evol. Comput., 6 (2012), 847–860. https://doi.org/10.1109/TEVC.2011.2173580 doi: 10.1109/TEVC.2011.2173580
    [18] M. Hunjan, G. K. Venayagamoorthy, Adaptive power system stabilizers using artificial immune system, IEEE Symp. Artif. Life, 2007 (2007), 440–447.
    [19] M. Gui, A. Pahwa, S. Das, Analysis of animal-related outages in overhead distribution systems with Wavelet decomposition and immune systems-based neural networks, IEEE Trans. Power Syst., 24 (2009), 1765–1771. https://doi.org/10.1109/TPWRS.2009.2030382 doi: 10.1109/TPWRS.2009.2030382
    [20] V. Cutello, G. Nicosia, M. Pavone, J. Timmis, An immune algorithm for protein structure prediction on lattice models, IEEE Trans. Evol. Comput., 11 (2007), 101–117. https://doi.org/10.1109/TEVC.2006.880328 doi: 10.1109/TEVC.2006.880328
    [21] V. Cutello, G. Morelli, G. Nicosia, M. Pavone, G. Scollo, On discrete models and immunological algorithms for protein structure prediction, Nat. Comput., 10 (2011), 91–102. https://doi.org/10.1007/s11047-010-9196-y doi: 10.1007/s11047-010-9196-y
    [22] C. Vincenzo, N. Giuseppe, P. Mario, P. Igor, Protein multiple sequence alignment by hybrid bio-inspired algorithms, Nucleic Acids Res., 39 (2011), 1980–1992. https://doi.org/10.1093/nar/gkq1052 doi: 10.1093/nar/gkq1052
    [23] S. C. Gao, R. L. Wang, M. Ishii, Z. Tang, An artificial immune system with feedback mechanisms for effective handling of populationsize, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E93A (2010), 532–541. https://doi.org/10.1587/transfun.E93.A.532 doi: 10.1587/transfun.E93.A.532
    [24] T. Luo, A clonal selection algorithm for dynamic multimodal function optimization, Swarm Evol. Comput., 50 (2019), 1980–1992.
    [25] W. W. Zhang, W. Zhang, G. G. Yen, H. L. Jing, A cluster-based clonal selection algorithm for optimization in dynamic environment, Swarm Evol. Comput., 50 (2019), 1–13. https://doi.org/10.1016/j.swevo.2018.10.005 doi: 10.1016/j.swevo.2018.10.005
    [26] H. Zhang, J. Sun, T. Liu, K. Zhang, Q. Zhang, Balancing exploration and exploitation in multiobjective evolutionary optimization, Inf. Sci., 497 (2019). https://doi.org/10.1016/j.ins.2019.05.046 doi: 10.1016/j.ins.2019.05.046
    [27] N. Khilwani, A. Prakash, R. Shankar, M. K. Tiwari, Fast clonal algorithm, Eng. Appl. Artif. Intell., 21 (2008), 106–128. https://doi.org/10.1016/j.engappai.2007.01.004 doi: 10.1016/j.engappai.2007.01.004
    [28] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evol. Comput., 3 (1999), 82–102. https://doi.org/10.1109/4235.771163 doi: 10.1109/4235.771163
    [29] C. Y. Lee, X. Yao, Evolutionary programming using mutations based on the levy probability distribution, IEEE Trans. Evol. Comput., 8 (2004), 1–13. https://doi.org/10.1109/TEVC.2003.816583 doi: 10.1109/TEVC.2003.816583
    [30] M. Gong, L. Jiao, L. Zhang, Baldwinian learning in clonal selection algorithm for optimization, Inf. Sci., 180 (2010), 1218–1236. https://doi.org/10.1016/j.ins.2009.12.007 doi: 10.1016/j.ins.2009.12.007
    [31] A. M. Whitbrook, U. Aickelin, J. M. Garibaldi, Idiotypic immune networks in mobile-robot control, IEEE Trans. Syst. Man Cybern. Part B Cybern., 37 (2007), 1581–1598. https://doi.org/10.1016/j.ins.2009.12.007 doi: 10.1016/j.ins.2009.12.007
    [32] S. Gao, H. W. Dai, J. C. Zhang, Z. Tang, An expanded lateral interactive clonal selection algorithm and its application, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E91A (2008), 2223–2231. https://doi.org/10.1093/ietfec/e91-a.8.2223 doi: 10.1093/ietfec/e91-a.8.2223
    [33] V. Stanovov, S. Akhmedova, E. Semenkin, Selective pressure strategy in differential evolution: Exploitation improvement in solving global optimization problems, Swarm Evol. Comput., 50 2018, 1–14. https://doi.org/10.1016/j.swevo.2018.10.014 doi: 10.1016/j.swevo.2018.10.014
    [34] R. M. Hoare, Structure and Dynamics of Simple Microclusters, John Wiley Sons, Inc., 2007.
    [35] K. Deep, M. Arya, Minimization of Lennard-Jones Potential Using Parallel Particle Swarm Optimization Algorithm, Springer Berlin Heidelberg, 2010.
    [36] M. R. Hoare, Structure and dynamics of simple microclusters, Adv. Chem. Phys., (1979), 49–135.
    [37] J. A. Northby, Structure and binding of lennard-jones clusters, J. Chem. Phys., 87 (1987), 6166–6177. https://doi.org/10.1063/1.453492 doi: 10.1063/1.453492
    [38] G. Xue, Improvement on the northby algorithm for molecular conformation: Better solutions, J. Global Optim., 4 (1994), 425–440.
    [39] D. J. Wales, J. P. K. Doye, Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms, J. Phys. Chem. A, 101 (1998), 5111–5116. https://doi.org/10.1021/jp970984n doi: 10.1021/jp970984n
    [40] R. H. Leary, Global optima of lennard-jones clusters, J. Global Optim., 11 (1997), 35–53. https://doi.org/10.1021/jp970984n doi: 10.1021/jp970984n
    [41] R. H. Leary, Global optimization on funneling landscapes, J. Global Optim., 18 (2000), 367–383. https://doi.org/10.1023/A:1026500301312 doi: 10.1023/A:1026500301312
    [42] D. Daven, N. Tit, J. Morris, K. Ho, Structural optimization of lennard-jones clusters by a genetic algorithm, Chem. Phys. Lett., 256 (1996), 195–200. https://doi.org/10.1016/0009-2614(96)00406-X doi: 10.1016/0009-2614(96)00406-X
    [43] B. Hartke, Efficient global geometry optimization of atomic and molecular clusters, Eur. Phys. J. D, 2006 (2006). https://doi.org/10.1007/0-387-30927-6-6 doi: 10.1007/0-387-30927-6-6
    [44] K. Deep, Shashi, V. K. Katiyar, Global optimization of lennard jones potential using newly developed real coded genetic algorithms, in International Conference on Communication Systems and Network Technologies, (2011), 614–618.
    [45] N. P. Moloi, M. M. Ali, An iterative global optimization algorithm for potential energy minimization, Comput. Optim. Appl., 30 (2005), 119–132. https://doi.org/10.1007/s10589-005-4555-9 doi: 10.1007/s10589-005-4555-9
    [46] D. M. Deaven, K. M. Ho, Molecular geometry optimization with a genetic algorithm, Phys. Rev. Lett., 75 (1995), 288–291. https://doi.org/10.1103/PhysRevLett.75.288 doi: 10.1103/PhysRevLett.75.288
    [47] S. Darby, T. V. Mortimer-Jones, R. L. Johnston, C. Roberts, Theoretical study of cu-au nanoalloy clusters using a genetic algorithm, J. Chem. Phys., 116 (2002), 1536–1550.
    [48] M. R. Hoare, Structure and dynamics of simple microclusters, Adv. Chem. Phys., 40 (1979), 49–135. https://doi.org/10.1002/9780470142592.ch2 doi: 10.1002/9780470142592.ch2
    [49] G. Xue, R. S. Maier, J. B. Rosen, Minimizing the lennard-jones potential function on a massively parallel computer, in Proceedings of the 6th International Conference on Supercomputing, ACM, (1992), 409–416.
    [50] D. Dasgupta, S. Yu, F. Nino, Recent advances in artificial immune systems: models and applications, Appl. Soft Comput., 11 (2011), 1547–1587. https://doi.org/10.1016/j.asoc.2010.08.024 doi: 10.1016/j.asoc.2010.08.024
    [51] E. Hart, J. Timmis, Application areas of ais: The past, the present and the future, Appl. Soft Comput., 8 (2008), 191–201. https://doi.org/10.1016/j.asoc.2006.12.004 doi: 10.1016/j.asoc.2006.12.004
    [52] V. Cutello, G. Nicosia, M. Pavone, Exploring the capability of immune algorithms: A characterization of hypermutation operators, in Third International Conference on Artificial Immune Systems, (2004), 263–276. https://doi.org/10.1007/978-3-540-30220-9-22
    [53] T. Jansen, C. Zarges, Analyzing different variants of immune inspired somatic contiguous hypermutations, Theor. Comput. Sci., 412 (2011), 517–533. https://doi.org/10.1016/j.tcs.2010.09.027 doi: 10.1016/j.tcs.2010.09.027
    [54] X. Xu, J. Zhang, An improved immune evolutionary algorithm for multimodal function optimization, in Third International Conference on Natural Computation, (2007), 641–646.
    [55] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evol. Comput., 3 (1999), 82–102. https://doi.org/10.1109/4235.771163 doi: 10.1109/4235.771163
    [56] V. Cutello, G. Nicosia, M. Pavone, Real coded clonal selection algorithm for unconstrained global optimization using a hybrid inversely proportional hypermutation operator, in Proceedings of the 2006 ACM symposium on Applied computing, (2006), 950–954.
    [57] M. Crepinsek, S. H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: a survey, ACM Comput. Surv., 45 (2013), 1–35. https://doi.org/10.1145/2480741.2480752 doi: 10.1145/2480741.2480752
    [58] L. Jiao, Y. Li, M. Gong, X. Zhang, Quantum-inspired immune clonal algorithm for global optimization, IEEE Trans. Syst. Man Cybern. Part B Cybern., 38 (2008), 1234–1253. https://doi.org/10.1109/TSMCB.2008.927271 doi: 10.1109/TSMCB.2008.927271
    [59] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, IEEE Congr. Evol. Comput., 2007 (2007), 4661–4667. https://doi.org/10.1109/4235.771163 doi: 10.1109/4235.771163
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1402) PDF downloads(71) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog