Research article Special Issues

A new multi-objective optimization ratio analysis plus full multiplication form method for the selection of an appropriate mining method based on 2-tuple spherical fuzzy linguistic sets


  • Received: 18 June 2022 Revised: 19 September 2022 Accepted: 19 September 2022 Published: 10 October 2022
  • The selection of an appropriate mining method is considered as an important tool in the mining design process. The adoption of a mining method can be regarded as a complex multi-attribute group decision-making (MAGDM) problem as it may contain uncertainty and vagueness. The main goal of this paper is to propose an extended multi-objective optimization ratio analysis plus full multiplication form (MULTIMOORA) method that is based on a 2-tuple spherical fuzzy linguistic set (2TSFLS). The MULTIMOORA method under 2TSFL conditinos has been developled as a novel approach to deal with uncertainty in decision-making problems. The proposed work shows that 2TSFLSs contain collaborated features of spherical fuzzy sets (SFSs) and 2-tuple linguistic term sets (2TLTSs) and, hence, can be considered as a rapid and efficient tool to represent the experts' judgments. Thus, the broader structure of SFSs, the ability of 2TLTSs to represent linguistic assessments, and the efficiency of the MULTIMOORA approach have motivated us to present this work. To attain our desired results, we built a normalized Hamming distance measure and score function for 2TSFLSs. We demonstrate the applicability and realism of the proposed method with the help of a numerical example, that is, the selection of a suitable mining method for the Kaiyang phosphate mine. Then, the results of the proposed work are compared with the results of existing methods to better reflect the strength and effectiveness of the proposed work. Finally, we conclude that the proposed MULTIMOORA method within a 2TSFLS framework is quite efficient and comprehensive to deal with the arising MAGDM problems.

    Citation: Ayesha Khan, Muhammad Akram, Uzma Ahmad, Mohammed M. Ali Al-Shamiri. A new multi-objective optimization ratio analysis plus full multiplication form method for the selection of an appropriate mining method based on 2-tuple spherical fuzzy linguistic sets[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 456-488. doi: 10.3934/mbe.2023021

    Related Papers:

  • The selection of an appropriate mining method is considered as an important tool in the mining design process. The adoption of a mining method can be regarded as a complex multi-attribute group decision-making (MAGDM) problem as it may contain uncertainty and vagueness. The main goal of this paper is to propose an extended multi-objective optimization ratio analysis plus full multiplication form (MULTIMOORA) method that is based on a 2-tuple spherical fuzzy linguistic set (2TSFLS). The MULTIMOORA method under 2TSFL conditinos has been developled as a novel approach to deal with uncertainty in decision-making problems. The proposed work shows that 2TSFLSs contain collaborated features of spherical fuzzy sets (SFSs) and 2-tuple linguistic term sets (2TLTSs) and, hence, can be considered as a rapid and efficient tool to represent the experts' judgments. Thus, the broader structure of SFSs, the ability of 2TLTSs to represent linguistic assessments, and the efficiency of the MULTIMOORA approach have motivated us to present this work. To attain our desired results, we built a normalized Hamming distance measure and score function for 2TSFLSs. We demonstrate the applicability and realism of the proposed method with the help of a numerical example, that is, the selection of a suitable mining method for the Kaiyang phosphate mine. Then, the results of the proposed work are compared with the results of existing methods to better reflect the strength and effectiveness of the proposed work. Finally, we conclude that the proposed MULTIMOORA method within a 2TSFLS framework is quite efficient and comprehensive to deal with the arising MAGDM problems.



    加载中


    [1] D. E. Nicholas, Selection procedure a numerical approach, Design and operation of caving and sublevel stoping mining engineers of the American institute of mining, metallurgical, and petroleum Engineers, SME-AIME, 1981 (1981).
    [2] M. Ataei, H. Shahsavany, R. Mikaeil, C. Monte, Analytic Hierarchy Process (MAHP) approach to selection of optimum mining method, Int. J. Min. Sci. Tech., 23 (2013), 573–578. https://doi.org/10.1016/j.ijmst.2013.07.017 doi: 10.1016/j.ijmst.2013.07.017
    [3] M. Z. Naghadehi, R. Mikaeil, M. Ataei, The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine, Iran, Expert Syst. Appl., 36 (2009), 8218–8226. https://doi.org/10.1016/j.eswa.2008.10.006 doi: 10.1016/j.eswa.2008.10.006
    [4] Z. N. Sun, Choice of mining methods based on artificial intelligence theory, Master Thesis, Northeastern University, Shenyang, China, 2009.
    [5] P. Kraipeerapun, C. C. Fung, W. Brown, Assessment of uncertainty in mineral prospectivity prediction using interval neutrosophic set, in International Conference on Computational and Information Science, Heidelberg, (2005), 1074–1079. https://doi.org/10.1007/11596981-160
    [6] W. Liang, G. Zhao, C. Hong, Selecting the optimal mining method with extended multi-objective optimization by ratio analysis plus the full multiplicative form (MULTIMOORA) approach, Neural Comput. Appl., 31 (2019), 5871–5886. https://doi.org/10.1007/s00521-018-3405-5 doi: 10.1007/s00521-018-3405-5
    [7] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [8] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96. https://doi.org/10.1007/978-3-7908-1870-3-1 doi: 10.1007/978-3-7908-1870-3-1
    [9] R. R. Yager, Pythagorean fuzzy subsets, in 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), (2013). https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [10] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE Trans. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [11] B. C. Cuong, V. Kreinovich, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409–420. https://doi.org/10.1109/WICT.2013.7113099 doi: 10.1109/WICT.2013.7113099
    [12] F. K. G$\ddot{u}$ndo$\breve{g}$du, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Int. Fuzzy. Syst., 36 (2019), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [13] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [14] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning Part I, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90046-8 doi: 10.1016/0020-0255(75)90046-8
    [15] H. Zhang, Linguistic intuitionistic fuzzy sets and application in MAGDM, J. Appl. Math., 2014 (2014). https://doi.org/10.1155/2014/432092 doi: 10.1155/2014/432092
    [16] M. Lin, J. Wei, Z. Xu, R. Chen, Multiattribute group decision-making based on linguistic Pythagorean fuzzy interaction partitioned Bonferroni mean aggregation operators, Complexity, 2018 (2018). https://doi.org/10.1155/2018/9531064. doi: 10.1155/2018/9531064
    [17] H. Jin, S. Ashraf, S. Abdullah, M. Qiyas, M. Bano, S. Zeng, Linguistic spherical fuzzy aggregation operators and their applications in multi-attribute decision making problems, Mathematics, 7 (2019), 413. https://doi.org/10.3390/math7050413 doi: 10.3390/math7050413
    [18] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332 doi: 10.1109/91.890332
    [19] F. Herrera, L. Martínez, An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making, Int. J. Uncertain. Fuzz. Knowl. Based Syst., 8 (2000), 539–562. https://doi.org/10.1142/S0218488500000381 doi: 10.1142/S0218488500000381
    [20] P. Liu, S. M. Chen, P. Wang, Multiple-attribute group decision-making based on $q$-rung orthopair fuzzy power maclaurin symmetric mean operators, IEEE Trans. Syst. Man Cybern. Syst., 50 (2018), 3741–3756. https://doi.org/10.1109/TSMC.2018.2852948 doi: 10.1109/TSMC.2018.2852948
    [21] M. Akram, A. Khan, J. C. R. Alcantud, G. Santos-García. A hybrid decision-making framework under complex spherical fuzzy prioritized weighted aggregation operators, Expert Syst., 38 (2021), e12712. https://doi.org/10.1111/exsy.12712 doi: 10.1111/exsy.12712
    [22] Y. Xu, H. Wang, Approaches based on 2-tuple linguistic power aggregation operators for multiple attribute group decision making under linguistic environment, Appl. Soft Comput., 11 (2011), 3988–3997. https://doi.org/10.1016/j.asoc.2011.02.027 doi: 10.1016/j.asoc.2011.02.027
    [23] P. Liu, Y. Li, X. Zhang, W. Pedrycz, A multiattribute group decision-making method with probabilistic linguistic information based on an adaptive consensus reaching model and evidential reasoning, IEEE Trans. Cybern., (2022), 1–15. https://doi.org/10.1109/TCYB.2022.3165030 doi: 10.1109/TCYB.2022.3165030
    [24] S. Naz, M. Akram, M. M. A. Al-Shamiri, M. M. Khalaf, G. Yousaf, A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators, Math. Biosci. Eng., 19 (2022), 3843–3878. https://doi.org/10.3934/mbe.2022177 doi: 10.3934/mbe.2022177
    [25] M. Akram, A. Khan, U. Ahmad, J. C. R. Alcantud, M. M. A. Al-Shamiri, A new group decision-making framework based on 2-tuple linguistic complex $q$-rung picture fuzzy sets, Math. Biosci. Eng., 19 (2022), 11281–11323. https://doi.org/10.3934/mbe.2022526 doi: 10.3934/mbe.2022526
    [26] X. Deng, J. Wang, G. Wei, Some 2-tuple linguistic Pythagorean Heronian mean operators and their application to multiple attribute decision-making, J. Exp. Theor. Artif. Intell., 31 (2019), 555–574. https://doi.org/10.1080/0952813X.2019.1579258 doi: 10.1080/0952813X.2019.1579258
    [27] X. Deng, J. Wang, G. Wei, M. Lu, Models for multiple attribute decision making with some 2-tuple linguistic Pythagorean fuzzy Hamy mean operators, Mathematics, 6 (2018), 236. https://doi.org/10.3390/math6110236 doi: 10.3390/math6110236
    [28] G. W. Wei, 2-Tuple intuitionistic fuzzy linguistic aggregation operators in multiple attribute decision making, Iran. J. Fuzzy Syst., 16 (2019), 159–174. https://doi.org/10.22111/IJFS.2019.4789 doi: 10.22111/IJFS.2019.4789
    [29] S. Abdullah, O. Barukab, M. Qiyas, M. Arif, S. A. Khan, Analysis of decision support system based on 2-tuple spherical fuzzy linguistic aggregation information, Appl. Sci., 10 (2019), 276. https://doi.org/10.3390/app10010276 doi: 10.3390/app10010276
    [30] H. L. Hartman, J. M. Mutmansky, Introductory Mining Engineering, John Wiley and Sons, New York, 2002.
    [31] W. K. M. Brauers, E. K. Zavadskas, The MOORA method and its application to privatization in a transition economy, Control Cybern., 35 (2006), 445–469. http://eudml.org/doc/209425
    [32] W. K. M. Brauers, E. K. Zavadskas, MULTIMOORA optimization used to decide on a bank loan to buy property, Technol. Econ. Dev. Econ., 17 (2011), 259–290. https://doi.org/10.3846/13928619.2011.560632 doi: 10.3846/13928619.2011.560632
    [33] T. Bale$\check{z}$entis, A. Bale$\check{z}$entis, A survey on development and applications of the multi-criteria decision making method MULTIMOORA, J. Multi Criteria Decis. Anal., 21 (2014), 209–222. https://doi.org/10.1002/mcda.1501 doi: 10.1002/mcda.1501
    [34] L. P. Domínguez, A. A. Iniesta, I. R. Borb$\acute{o}$n, O. V. Villegas, Intuitionistic fuzzy MOORA for supplier selection, Dyna, 82 (2015), 34–41. http://dx.doi.org/10.15446/dyna.v82n191.51143 doi: 10.15446/dyna.v82n191.51143
    [35] H. C. Liu, J. X. You, C. Lu, M. M. Shan, Application of interval 2-tuple linguistic MULTIMOORA method for health-care waste treatment technology evaluation and selection, Waste Manage., 34 (2014), 2355–2364. https://doi.org/10.1016/j.wasman.2014.07.016 doi: 10.1016/j.wasman.2014.07.016
    [36] E. K. Zavadskas, J. Antucheviciene, S. H. R. Hajiagha, S. S. Hashemi, The interval-valued intuitionistic fuzzy MULTIMOORA method for group decision making in engineering, Math. Probl. Eng., 2015 (2015). https://doi.org/10.1155/2015/560690 doi: 10.1155/2015/560690
    [37] H. Garg, D. Rani, An efficient intuitionistic fuzzy MULTIMOORA approach based on novel aggregation operators for the assessment of solid waste management techniques, Appl. Intell., 52 (2022), 4330–4363. https://doi.org/10.1007/s10489-021-02541-w doi: 10.1007/s10489-021-02541-w
    [38] S. B. Aydemir, S. Y. G$\ddot{u}$nd$\ddot{u}$z, Extension of multi-Moora method with some $q$-rung orthopair fuzzy Dombi prioritized weighted aggregation operators for multi-attribute decision making, Soft Comput., 24 (2020), 18545–18563. https://doi.org/10.1007/s00500-020-05091-4 doi: 10.1007/s00500-020-05091-4
    [39] W. K. M. Brauers, E. K. Zavadskas, S. Kildiene, Was the construction sector in 20 European countries anti-cyclical during the recession years 2008–2009 as measured by multicriteria analysis (MULTIMOORA)?, Procedia Comput. Sci., 31 (2014), 949–956. https://doi.org/10.1016/j.procs.2014.05.347 doi: 10.1016/j.procs.2014.05.347
    [40] T. Mahmood, M. S. Warraich, Z. Ali, D. Pamucar, Generalized MULTIMOORA method and Dombi prioritized weighted aggregation operators based on T-spherical fuzzy sets and their applications, Int. J. Intell. Syst., 36 (2021), 4659–4692. https://doi.org/10.1002/int.22474 doi: 10.1002/int.22474
    [41] P. Rani, A. R. Mishra, Fermatean fuzzy Einstein aggregation operators-based MULTIMOORA method for electric vehicle charging station selection, Expert Syst. Appl., 182 (2021), 115–267. https://doi.org/10.1016/j.eswa.2021.115267 doi: 10.1016/j.eswa.2021.115267
    [42] S. Xian, Z. Liu, X. Gou, W. Wan, Interval 2-tuple Pythagorean fuzzy linguistic MULTIMOORA method with CIA and their application to MCGDM, Int. J. Intell. Syst., 35 (2020), 650–681. https://doi.org/10.1002/int.22221 doi: 10.1002/int.22221
    [43] B. Sarkar, A. Biswas, A multi-criteria decision making approach for strategy formulation using Pythagorean fuzzy logic, Expert Syst., 39 (2022), e12802. https://doi.org/10.1111/exsy.12802 doi: 10.1111/exsy.12802
    [44] A. Bale$\check{z}$entis, T. Bale$\check{z}$entis, An innovative multi-criteria supplier selection based on two-tuple MULTIMOORA and hybrid data, Econ. Comput. Econ. Cybern. Stud. Res., 45 (2011), 37–56.
    [45] F. K. G$\ddot{u}$ndo$\breve{g}$du, A spherical fuzzy extension of MULTIMOORA method, J. Intell. Fuzzy Syst., 38 (2020), 963–978. https://doi.org/10.3233/JIFS-179462 doi: 10.3233/JIFS-179462
    [46] X. Chen, L. Zhao, H. Liang, A novel multi-attribute group decision-making method based on the MULTIMOORA with linguistic evaluations, Soft Comput., 22 (2018), 5347–5361. https://doi.org/10.1007/s00500-018-3030-3 doi: 10.1007/s00500-018-3030-3
    [47] A. Hafezalkotob, A. Hafezalkotob, H. Liao, F. Herrera, An overview of MULTIMOORA for multi-criteria decision-making: theory, developments, applications, and challenges, Inf. Fusion, 51 (2018), 145–177. https://doi.org/10.1016/j.inffus.2018.12.002 doi: 10.1016/j.inffus.2018.12.002
    [48] A. Hafezalkotob, A. Hafezalkotob, M. K. Sayadi, Extension of MULTIMOORA method with interval numbers: An application in materials selection, Appl. Math. Model., 40 (2016), 1372–1386. https://doi.org/10.1016/j.apm.2015.07.019 doi: 10.1016/j.apm.2015.07.019
    [49] M. Akram, A. Khan, U. Ahmad, Extended MULTIMOORA method based on 2-tuple linguistic Pythagorean fuzzy sets for multi-attribute group decision-making, Granul. Comput., 2022 (2022), forthcoming. https://doi.org/10.1007/s41066-022-00330-5 doi: 10.1007/s41066-022-00330-5
    [50] X. Wang, E. Triantaphyllou, Ranking irregularities when evaluating alternatives by using some ELECTRE methods, Omega, 36 (2008), 45–63. https://doi.org/10.1016/j.omega.2005.12.003 doi: 10.1016/j.omega.2005.12.003
    [51] A. Karadogan, A. Kahriman, U. Ozer, Application of fuzzy set theory in the selection of underground mining method, J. S. Afr. I. Min. Metall., 108 (2018), 73–79.
    [52] S. Alpay, M. Yavuz, Underground mining method selection by decision making tools, Tunn. Undergr. Sp. Tech., 24 (2009), 173–184. https://doi.org/10.1016/j.tust.2008.07.003 doi: 10.1016/j.tust.2008.07.003
    [53] H. Karimnia, H. Bagloo, Optimum mining method selection using fuzzy analytical hierarchy process-Qapiliq salt mine, Iran, Int. J. Min. Sci. Tech., 25 (2015), 225–230. https://doi.org/10.1016/j.ijmst.2015.02.010 doi: 10.1016/j.ijmst.2015.02.010
    [54] M. Yavuz, The application of the analytic hierarchy process (AHP) and Yager's method in underground mining method selection problem, Int. J. Min. Reclam. Env., 29 (2015), 453–475. https://doi.org/10.1080/17480930.2014.895218 doi: 10.1080/17480930.2014.895218
    [55] A. Azadeh, M. Osanloo, M. Ataei, A new approach to mining method selection based on modifying the Nicholas technique, Appl. Soft Comput., 10 (2010), 1040–1061. https://doi.org/10.1016/j.asoc.2009.09.002 doi: 10.1016/j.asoc.2009.09.002
    [56] A. H. Liu, L. Dong, L. J. Dong, Optimization model of unascertained measurement for underground mining method selection and its application, J. Cent. South Univ., 17 (2010), 744–749. https://doi.org/10.1007/s11771-010-0550-0 doi: 10.1007/s11771-010-0550-0
    [57] K. Liu, W. Zhu, Q. Wang, X. Liu, X. Liu, Mining method selection and optimization for hanging-wall ore-body at Yanqianshan Iron Mine, China, Geotech. Geo. Eng., 35 (2017), 225–241. https://doi.org/10.1007/s10706-016-0100-0 doi: 10.1007/s10706-016-0100-0
    [58] B. C. Balusa, J. Singam, Underground mining method selection using WPM and PROMETHEE, J. Inst. Eng. India. Ser., 99 (2017), 165–171. https://doi.org/10.1007/s40033-017-0137-0 doi: 10.1007/s40033-017-0137-0
    [59] J. Yao, M. Luo, W. Li, M. Wang, Y. Liu, Optimal selection for unascertained measurement for the mining method of Kaiyang phosphorite, Sci. Tech. Rev., 30 (2012), 45–48.
    [60] W. Wu, R. Yang, Z. Wang, J. Liu, D. Wang, S. Liu, C. Yang, T. Ye, A new palaeo-weathering and leaching model for the formation of the ultra-large high-grade Kaiyang phosphate deposit, Guizhou, China, Arab. J. Geosci., 14 (2021). https://doi.org/10.1007/s12517-021-08587-x doi: 10.1007/s12517-021-08587-x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1662) PDF downloads(115) Cited by(12)

Article outline

Figures and Tables

Figures(8)  /  Tables(29)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog