Research article Special Issues

Stochastic investigation of HIV infection and the emergence of drug resistance


  • Received: 12 January 2021 Accepted: 22 October 2021 Published: 30 November 2021
  • Drug-resistant HIV-1 has caused a growing concern in clinic and public health. Although combination antiretroviral therapy can contribute massively to the suppression of viral loads in patients with HIV-1, it cannot lead to viral eradication. Continuing viral replication during sub-optimal therapy (due to poor adherence or other reasons) may lead to the accumulation of drug resistance mutations, resulting in an increased risk of disease progression. Many studies also suggest that events occurring during the early stage of HIV-1 infection (i.e., the first few hours to days following HIV exposure) may determine whether the infection can be successfully established. However, the numbers of infected cells and viruses during the early stage are extremely low and stochasticity may play a critical role in dictating the fate of infection. In this paper, we use stochastic models to investigate viral infection and the emergence of drug resistance of HIV-1. The stochastic model is formulated by a continuous-time Markov chain (CTMC), which is derived based on an ordinary differential equation model proposed by Kitayimbwa et al. that includes both forward and backward mutations. An analytic estimate of the probability of the clearance of HIV infection of the CTMC model near the infection-free equilibrium is obtained by a multitype branching process approximation. The analytical predictions are validated by numerical simulations. Unlike the deterministic dynamics where the basic reproduction number $ \mathcal{R}_0 $ serves as a sharp threshold parameter (i.e., the disease dies out if $ \mathcal{R}_0 < 1 $ and persists if $ \mathcal{R}_0 > 1 $), the stochastic models indicate that there is always a positive probability for HIV infection to be eradicated in patients. In the presence of antiretroviral therapy, our results show that the chance of clearance of the infection tends to increase although drug resistance is likely to emerge.

    Citation: Damilola Olabode, Libin Rong, Xueying Wang. Stochastic investigation of HIV infection and the emergence of drug resistance[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1174-1194. doi: 10.3934/mbe.2022054

    Related Papers:

  • Drug-resistant HIV-1 has caused a growing concern in clinic and public health. Although combination antiretroviral therapy can contribute massively to the suppression of viral loads in patients with HIV-1, it cannot lead to viral eradication. Continuing viral replication during sub-optimal therapy (due to poor adherence or other reasons) may lead to the accumulation of drug resistance mutations, resulting in an increased risk of disease progression. Many studies also suggest that events occurring during the early stage of HIV-1 infection (i.e., the first few hours to days following HIV exposure) may determine whether the infection can be successfully established. However, the numbers of infected cells and viruses during the early stage are extremely low and stochasticity may play a critical role in dictating the fate of infection. In this paper, we use stochastic models to investigate viral infection and the emergence of drug resistance of HIV-1. The stochastic model is formulated by a continuous-time Markov chain (CTMC), which is derived based on an ordinary differential equation model proposed by Kitayimbwa et al. that includes both forward and backward mutations. An analytic estimate of the probability of the clearance of HIV infection of the CTMC model near the infection-free equilibrium is obtained by a multitype branching process approximation. The analytical predictions are validated by numerical simulations. Unlike the deterministic dynamics where the basic reproduction number $ \mathcal{R}_0 $ serves as a sharp threshold parameter (i.e., the disease dies out if $ \mathcal{R}_0 < 1 $ and persists if $ \mathcal{R}_0 > 1 $), the stochastic models indicate that there is always a positive probability for HIV infection to be eradicated in patients. In the presence of antiretroviral therapy, our results show that the chance of clearance of the infection tends to increase although drug resistance is likely to emerge.



    加载中


    [1] WHO, Antibiotics resistance, 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance.
    [2] WHO, Antibiotics resistance, 2014. Available from: http://www.who.int/mediacentre/factsheets/fs194/en/.
    [3] Y. A. Luqmani, Mechanisms of drug resistance in cancer chemotherapy, Med. Princ. Pract., 14 (2005), 35–48. doi: 10.1159/000086183. doi: 10.1159/000086183
    [4] S. Falkow, Infectious multiple drug resistance, Pion Ltd, 1975.
    [5] F. M. Walsh, S. G. B. Amyes, Microbiology and drug resistance mechanisms of fully resistant pathogens, Curr. Opin. Microbiol., 7 (2004), 439–444. doi: 10.1016/j.mib.2004.08.007. doi: 10.1016/j.mib.2004.08.007
    [6] P. R. Hsueh, M. L. Chen, C. C. Sun, W. H. Chen, H. J. Pan, L. S. Yang, et al., Antimicrobial drug resistance in pathogens causing nosocomial infections at a university hospital in Taiwan, 1981–1999, Emerg. Infect. Dis., 8 (2002), 63–68. doi: 10.3201/eid0801.000454. doi: 10.3201/eid0801.000454
    [7] G. A. Curt, N. J. Clendeninn, B. A. Chabner, Drug resistance in cancer, Cancer. Treat. Rep., 68 (1984), 87–99.
    [8] G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder, et al., Drug resistance in cancer: an overview, Cancers, 6 (2014), 1769–1792. doi: 10.3390/cancers6031769. doi: 10.3390/cancers6031769
    [9] N. L. Komarova, D. Wodarz, Drug resistance in cancer: principles of emergence and prevention, P. Natl. Acad. Sci. USA., 102 (2005), 9714–9719. doi: 10.1073/pnas.0501870102. doi: 10.1073/pnas.0501870102
    [10] S. Blower, T. Porco, G. Darby, Predicting and preventing the emergence of antiviral drug resistance in HSV-2, Nat. Med., 4 (1998), 673–678. doi: 10.1038/nm0698-673. doi: 10.1038/nm0698-673
    [11] T. Cohen, C. Dye, C. Colijn, B. Williams, M. Murray, Mathematical models of the epidemiology and control of drug-resistant TB, Expert Rev. Respir. Med., 3 (2009), 67–79. doi: 10.1586/17476348.3.1.67. doi: 10.1586/17476348.3.1.67
    [12] AIDSinfo, Classes of drugs for HIV/AIDS, 2020. Available from: https://aidsinfo.nih.gov/drugs.
    [13] L. Rong, Z. Feng, A. S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol., 69 (2007), 2027–2060. doi: 10.1007/s11538-007-9203-3. doi: 10.1007/s11538-007-9203-3
    [14] S. G. Deeks, Treatment of antiretroviral-drug-resistant HIV-1 infection, Lancet, 362 (2003), 2002–2011. doi: 10.1016/S0140-6736(03)15022-2. doi: 10.1016/S0140-6736(03)15022-2
    [15] J. M. Kitayimbwa, J. Y. Mugisha, R. A. Saenz, The role of backward mutations on the within-host dynamics of HIV-1, J. Math. Biol., 67 (2013), 1111–1139. doi: 10.1007/s00285-012-0581-2. doi: 10.1007/s00285-012-0581-2
    [16] A. A. Howard, J. H. Arnsten, Y. Lo, D. Vlahov, J. D. Rich, P. Schuman, et al., A prospective study of adherence and viral load in a large multi-center cohort of HIV-infected women, AIDS, 16 (2002), 2175–2182. doi: 10.1097/00002030-200211080-00010. doi: 10.1097/00002030-200211080-00010
    [17] B. M. Kane, HIV/AIDS treatment drugs, Infobase Publishing, 2008.
    [18] J. J. Eron, S. L. Benoit, J. Jemsek, R. D. MacArthur, J. Santana, J. B. Quinn, et al., Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD$4^+$ cells per cubic millimeter, New. Engl. J. Med., 333 (1995), 1662–1669. doi: 10.1056/NEJM199512213332502. doi: 10.1056/NEJM199512213332502
    [19] A. R. McLean, M. A. Nowak, Competition between zidovudine-sensitive and resistant strain of HIV, AIDS, 6 (1992), 71–79. doi: 10.1097/00002030-199201000-00009. doi: 10.1097/00002030-199201000-00009
    [20] D. E. Kirschner, G. Webb, Understanding drug resistance for monotherapy treatment of HIV infection, Bull. Math. Biol., 59 (1997), 763–785. doi: 10.1007/BF02458429. doi: 10.1007/BF02458429
    [21] M. A. Nowak, S. Bonhoeffer, G. M. Shaw, R. M. May, Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, J. Theor. Biol., 184 (1997), 203–217. doi: 10.1006/jtbi.1996.0307. doi: 10.1006/jtbi.1996.0307
    [22] R. M. Ribeiro, S. Bonhoeffer, M. A. Nowak, The frequency of resistant mutant virus before antiviral therapy, AIDS, 12 (1998), 461–465. doi: 10.1097/00002030-199805000-00006. doi: 10.1097/00002030-199805000-00006
    [23] T. B. Kepler, A. S. Perelson, Drug concentration heterogeneity facilitates the evolution of drug resistance, P. Natl. Acad. Sci. USA., 95 (1998), 11514–11519. doi: 10.1073/pnas.95.20.11514. doi: 10.1073/pnas.95.20.11514
    [24] J. M. Murray, A. S. Perelson, Human immunodeficiency virus: quasi-species and drug resistance, Multiscale Model. Sim., 3 (2005), 300–311. doi. 10.1137/040603024.
    [25] N. K. Vaidya, L. Rong, V. C. Marconi, D. R. Kuritzkes, S. G. Deeks, A. S. Perelson, Treatment-mediated alterations in HIV fitness preserve CD$4^+$ T cell counts but have minimal effects on viral load, PLoS Comput. Biol., 6 (2010). doi: 10.1371/journal.pcbi.1001012.
    [26] S. Moreno-Gamez, A. L. Hill, D. I. S. Rosenbloom, D. A. Petrov, M. A. Nowak, P. S. Pennings, Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance, P. Natl. Acad. Sci. USA., 112 (2015), E2874–E2883. doi 10.1073/pnas.1424184112.
    [27] J. M. Conway, A. S. Perelson, Post-treatment control of HIV infection, P. Natl. Acad. Sci. USA., 112 (2015), 5467–5472. doi: 10.1073/pnas.1419162112. doi: 10.1073/pnas.1419162112
    [28] J. M. Conway, D. Coombs, A stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients, PLoS Comput. Biol., 7 (2011), e1002033. doi:10.1371/journal.pcbi.1002033. doi: 10.1371/journal.pcbi.1002033
    [29] J. M. Conway, B. P. Konrad, D. Coombs, Stochastic analysis of pre-and postexposure prophylaxis against HIV infection, SIAM J. Appl. Math., 73 (2013), 904–928. doi: 10.1137/120876800. doi: 10.1137/120876800
    [30] J. M. Conway, A. S. Perelson, Early HIV infection predictions: role of viral replication errors, SIAM J. Appl. Math., 78 (2018), 1863–1890. doi: 10.1137/17M1134019. doi: 10.1137/17M1134019
    [31] A. L. Hill, D. I. Rosenbloom, F. Fu, M. A. Nowak, R. F. Siliciano, Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1, P. Natl. Acad. Sci. USA., 111 (2014), 13475–13480. doi: 10.1073/pnas.1406663111. doi: 10.1073/pnas.1406663111
    [32] A. L. Hill, D. I. S. Rosenbloom, E. Goldstein, E. Hanhauser, D. R. Kuritzkes, R. F. Siliciano, et al., Real-time predictions of reservoir size and rebound time during antiretroviral therapy interruption trials for HIV, PLoS Pathog., 12 (2016), e1005535. doi: 10.1371/journal.ppat.1005535. doi: 10.1371/journal.ppat.1005535
    [33] H. C. Tuckwell, E. Le Corfec, A stochastic model for early HIV-1 population dynamics, J. Theore. Biol., 195 (1998), 451–463. doi: 10.1006/jtbi.1998.0806. doi: 10.1006/jtbi.1998.0806
    [34] D. Wick, S. G. Self, Early hiv infection in vivo: branching-process model for studying timing of immune responses and drug therapy, Math. Biosci., 165 (2000), 115–134. doi:10.1016/s0025-5564(00)00013-4. doi: 10.1016/s0025-5564(00)00013-4
    [35] A. Kamina, R. W. Makuch, H. Zhao, A stochastic modeling of early HIV-1 population dynamics, Math. Biosci., 170 (2001), 187–198. doi:10.1016/S0025-5564(00)00069-9. doi: 10.1016/S0025-5564(00)00069-9
    [36] T. Feng, Z. Qiu, X. Meng, L. Rong, Analysis of a stochastic HIV-1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437–455. doi:10.1016/j.amc.2018.12.007. doi: 10.1016/j.amc.2018.12.007
    [37] J. E. Pearson, P. Krapivsky, A. S. Perelson, Stochastic theory of early viral infection: continuous versus burst production of virions, PLoS Comput. Biol., 7 (2011), e1001058. doi: 10.1371/journal.pcbi.1001058. doi: 10.1371/journal.pcbi.1001058
    [38] D. B. Reeves, M. Rolland, B. L. Dearlove, Y. Li, M. L. Robb, J. T. Schiffer, et al., Timing HIV infection with a simple and accurate population viral dynamics model, J. R. Soc. Interface., 18 (2020), 20210314. doi: 10.1098/rsif.2021.0314. doi: 10.1098/rsif.2021.0314
    [39] M. Bofill, G. Janossy, C. A. Lee, D. Maconald-burns, A. N. Phillips, C.Sabin, et al., Laboratory control values for CD4 and CD8 T lymphocytes. implications for HIV-1 diagnosis, Clin. Exp. Immunol., 88 (1992), 243–252. doi: 10.1111/j.1365-2249.1992.tb03068.x. doi: 10.1111/j.1365-2249.1992.tb03068.x
    [40] H. Mohri, S. Bonhoeffer, S. Monard, A. S. Perelson, D. D. Ho, Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science, 279 (1998), 1223–1227. doi: 10.1126/science.279.5354.1223. doi: 10.1126/science.279.5354.1223
    [41] A. S. Perelson, R. M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC. Biol., 11 (2013), 96. doi: 10.1186/1741-7007-11-96. doi: 10.1186/1741-7007-11-96
    [42] M. Markowitz, M. Louie, A. Hurley, E. Sun, M. D. Mascio, A. S. Perelson, et al., A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, J. Virol., 77 (2003), 5037–5038. doi: 10.1128/jvi.77.8.5037-5038.2003. doi: 10.1128/jvi.77.8.5037-5038.2003
    [43] B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J. E. Mittler, et al., Rapid production and clearance of HIV-1 and hepatitis c virus assessed by large volume plasma apheresis, Lancet, 354 (1999), 1782–1785. doi: 10.1016/S0140-6736(99)02035-8. doi: 10.1016/S0140-6736(99)02035-8
    [44] Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi:10.1016/S0025-5564(02)00108-6. doi: 10.1016/S0025-5564(02)00108-6
    [45] N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272. doi: 10.1007/s11538-008-9299-0. doi: 10.1007/s11538-008-9299-0
    [46] Y. Yuan, L. J. Allen, Stochastic models for virus and immune system dynamics, Math. Biosci., 234 (2011), 84–94. doi: 10.1016/j.mbs.2011.08.007. doi: 10.1016/j.mbs.2011.08.007
    [47] L. J. Allen, G. E. Lahodny Jr, Extinction thresholds in deterministic and stochastic epidemic models, J. Biol. Dynam., 6 (2012), 590–611. doi:10.1080/17513758.2012.665502. doi: 10.1080/17513758.2012.665502
    [48] K. B. Athreya, P. Jagers, Classical and modern branching processes, Springer Science & Business Media, 2012.
    [49] K. S. Dorman, J. S. Sinsheimer, K. Lange, In the garden of branching processes, SIAM Rev., 46 (2004), 202–229. doi. 10.1137/S0036144502417843.
    [50] T. E. Harris, The theory of branching process, Berlin Springer, 1963.
    [51] P. Jagers, Branching processes with biological applications, Wiley, 1975.
    [52] H. W. Watson, F. Galton, On the probability of the extinction of families, J. Anthropological Inst. G. B. Irel., 4 (1875), 138–144.
    [53] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM, 1994.
    [54] L. J. Allen, P. van den Driessche, Relations between deterministic and stochastic thresholds for disease extinction in continuous-and discrete-time infectious disease models, Math. Biosci., 243 (2013), 99–108. doi: 10.1016/j.mbs.2013.02.006. doi: 10.1016/j.mbs.2013.02.006
    [55] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81 (1977), 2340–2361. doi: 10.1021/j100540a008. doi: 10.1021/j100540a008
    [56] D. B. Reeves, E. R. Duke, T. A. Wagner, S. E. Palmer, A. M. Spivak, J. T. Schiffer, A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation, Nat. Commun., 9 (2018), 1–16. doi: 10.1038/s41467-018-06843-5. doi: 10.1038/s41467-018-06843-5
    [57] L. Rong, A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theor. Biol., 260 (2009), 308–331. doi: 10.1016/j.jtbi.2009.06.011. doi: 10.1016/j.jtbi.2009.06.011
    [58] D. B. Reeves, Y. Huang, E. R. Duke, B. T. Mayer, E. F. Cardozo-Ojeda, F. A. Boshier, et al., Mathematical modeling to reveal breakthrough mechanisms in the HIV antibody mediated prevention (AMP) trials, PLoS Comput. Biol., 16 (2020), e1007626. doi:10.1371/journal.pcbi.1007626. doi: 10.1371/journal.pcbi.1007626
    [59] L. J. Allen, Stochastic population and epidemic models, Mathematical Biosciences Lecture series, Stochastics in Biological Systems, 2015.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2583) PDF downloads(171) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog