Research article Special Issues

Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator


  • Received: 24 May 2023 Revised: 20 September 2023 Accepted: 06 October 2023 Published: 18 October 2023
  • It has been shown that Allee effect can change predator-prey dynamics and impact species persistence. Allee effect in the prey population has been widely investigated. However, the study on the Allee effect in the predator population is rare. In this paper, we investigate the spatiotemporal dynamics of a diffusive predator-prey model with digestion delay and Allee effect in the predator population. The conditions of stability and instability induced by diffusion for the positive equilibrium are obtained. The effect of delay on the dynamics of system has three different cases: (a) the delay doesn't change the stability of the positive equilibrium, (b) destabilizes and stabilizes the positive equilibrium and induces stability switches, or (c) destabilizes the positive equilibrium and induces Hopf bifurcation, which is revealed (numerically) to be corresponding to high, intermediate or low level of Allee effect, respectively. To figure out the joint effect of delay and diffusion, we carry out Turing-Hopf bifurcation analysis and derive its normal form, from which we can obtain the classification of dynamics near Turing-Hopf bifurcation point. Complex spatiotemporal dynamical behaviors are found, including the coexistence of two stable spatially homogeneous or inhomogeneous periodic solutions and two stable spatially inhomogeneous quasi-periodic solutions. It deepens our understanding of the effects of Allee effect in the predator population and presents new phenomena induced be delay with spatial diffusion.

    Citation: Fang Liu, Yanfei Du. Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857

    Related Papers:

  • It has been shown that Allee effect can change predator-prey dynamics and impact species persistence. Allee effect in the prey population has been widely investigated. However, the study on the Allee effect in the predator population is rare. In this paper, we investigate the spatiotemporal dynamics of a diffusive predator-prey model with digestion delay and Allee effect in the predator population. The conditions of stability and instability induced by diffusion for the positive equilibrium are obtained. The effect of delay on the dynamics of system has three different cases: (a) the delay doesn't change the stability of the positive equilibrium, (b) destabilizes and stabilizes the positive equilibrium and induces stability switches, or (c) destabilizes the positive equilibrium and induces Hopf bifurcation, which is revealed (numerically) to be corresponding to high, intermediate or low level of Allee effect, respectively. To figure out the joint effect of delay and diffusion, we carry out Turing-Hopf bifurcation analysis and derive its normal form, from which we can obtain the classification of dynamics near Turing-Hopf bifurcation point. Complex spatiotemporal dynamical behaviors are found, including the coexistence of two stable spatially homogeneous or inhomogeneous periodic solutions and two stable spatially inhomogeneous quasi-periodic solutions. It deepens our understanding of the effects of Allee effect in the predator population and presents new phenomena induced be delay with spatial diffusion.



    加载中


    [1] A. J. Lotka, Elements of physical biology, Nature, 116 (1925), 461. https://doi.org/10.1038/116461b0 doi: 10.1038/116461b0
    [2] V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, ICES J. Mar. Sci., 3 (1928), 3–51. https://doi.org/10.1093/icesjms/3.1.3 doi: 10.1093/icesjms/3.1.3
    [3] S. Zhou, Y. Liu, G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23–31. https://doi.org/ 10.1016/j.tpb.2004.06.007 doi: 10.1016/j.tpb.2004.06.007
    [4] P. Aguirre, E. Gonzalez-Olivares, E. Saez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, SIAM J. Appl. Math., 69 (2009), 1244–1262. https://doi.org/10.1137/070705210 doi: 10.1137/070705210
    [5] J. Wang, J. Shi, J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291–331. https://doi.org/10.1007/s00285-010-0332-1 doi: 10.1007/s00285-010-0332-1
    [6] F. Courchamp, L. Berec, J. Gascoigne, Allee Effects in Ecology and Conservation, 1$^{st}$ edition, Oxford University Press, New York, 2008. https://doi.org/10.1093/acprof: oso/9780198570301.001.0001
    [7] D. Thompson, I. Strange, M. Riddy, C. D. Duck, The size and status of the population of southern sea lions Otaria flavescens in the Falkland Islands, Biol. Conserv., 121 (2005), 357–367. https://doi.org/10.1016/j.biocon.2004.05.008 doi: 10.1016/j.biocon.2004.05.008
    [8] A. Hurford, M. Hebblewhite, M. A. Lewis, A spatially explicit model for an Allee effect: Why wolves recolonize so slowly in Greater Yellowstone, Theor. Popul. Biol., 70 (2006), 244–254. https://doi.org/10.1016/j.tpb.2006.06.009 doi: 10.1016/j.tpb.2006.06.009
    [9] J. L. Stenglein, T. L. Deelen, Demographic and component Allee effects in southern lake superior gray wolves, PLoS One, 11 (2016), e0150535. https://doi.org/10.1371/journal.pone.0150535 doi: 10.1371/journal.pone.0150535
    [10] D. Sen, S. Ghorai, M. Banerjee, A. Morozov, Bifurcation analysis of the predator-prey model with the Allee effect in the predator, J. Math. Biol., 84 (2022), 1–27. https://doi.org/10.1007/s00285-021-01707-x doi: 10.1007/s00285-021-01707-x
    [11] S. Li, S. Yuan, Z. Jin, H. Wang, Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator, J. Differ. Equation, 357 (2023), 32–63. https://doi.org/10.1016/j.jde.2023.02.009 doi: 10.1016/j.jde.2023.02.009
    [12] L. Anjos, M. I. Costa, R. C. Almeida, Rapid spread agents may impair biological control in a tritrophic food web with intraguild predation, Ecol. Complex., 46 (2021), 100926. https://doi.org/10.1016/j.ecocom.2021.100926 doi: 10.1016/j.ecocom.2021.100926
    [13] D. Sen, S. Petrovskii, S. Ghorai, M. Banerjee, Rich bifurcation structure of prey-predator model induced by the Allee effect in the growth of generalist predator, Int. J. Bifurcat. Chaos, 30 (2020), 1–22. https://doi.org/10.1142/S0218127420500844 doi: 10.1142/S0218127420500844
    [14] S. Rana, A. R. Bhowmick, S. Bhattacharya, Impact of prey refuge on a discrete time predator-prey system with Allee effect, Int. J. Bifurcat. Chaos, 24 (2014), 1450106. https://doi.org/10.1142/S0218127414501065 doi: 10.1142/S0218127414501065
    [15] A. Bompard, I. Amat, X. Fauvergue, T. Spataro, Host-Parasitoid Dynamics and the Success of Biological Control When Parasitoids Are Prone to Allee Effects, PLoS One, 8 (2013), e76768. https://doi.org/10.1371/journal.pone.0076768 doi: 10.1371/journal.pone.0076768
    [16] Y. Kuang, Delay Differential Equations: with Applications in Population Dynamics, Academic Pres, Boston, 1993. https://doi.org/10.1016/0378-4754(93)90045-V
    [17] A. Martin, S. Ruan, Predator-prey models with delay and prey harvesting, J. Math. Biol., 43 (2001), 247–267. https://doi.org/10.1007/s002850100095 doi: 10.1007/s002850100095
    [18] J. Xia, Z. Liu, R. Yuan, S. Ruan, The effects of harvesting and time delay on predator-prey systems with Holling type II functional response, SIAM J. Appl. Math., 70 (2009), 1178–1200. https://api.semanticscholar.org/CorpusID: 6516128
    [19] Q. An, W. Jiang, Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Cont. Dyn. B, 24 (2019), 487–510. https://doi.org/10.3934/DCDSB.2018183 doi: 10.3934/DCDSB.2018183
    [20] Y. Song, T. Zhang, Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci., 33 (2016), 229–258. https://doi.org/10.1016/j.cnsns.2015.10.002 doi: 10.1016/j.cnsns.2015.10.002
    [21] Y. Song, H. Jiang, Y. Yuan, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, J. Appl. Anal. Comput., 9 (2019), 1132–1164. https://doi.org/10.11948/2156-907X.20190015 doi: 10.11948/2156-907X.20190015
    [22] B. Dai, G. Sun, Turing-Hopf bifurcation of a delayed diffusive predator-prey system with chemotaxis and fear effect, Appl. Math. Lett., 111 (2021), 106644. https://doi.org/10.1016/j.aml.2020.106644 doi: 10.1016/j.aml.2020.106644
    [23] W. Jiang, Q. An, J. Shi, Formulation of the normal form of Turing-Hopf bifurcation in partial functional differential equations, J. Differ. Equation, 268 (2020), 6067–6102. https://doi.org/10.1016/j.jde.2019.11.039 doi: 10.1016/j.jde.2019.11.039
    [24] J. Wang, J. Wei, J. Shi, Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, J. Differ. Equation, 260 (2016), 3495–3523. https://doi.org/10.1016/j.jde.2015.10.036 doi: 10.1016/j.jde.2015.10.036
    [25] X. Wang, Y. Cai, H. Ma, Dynamics of a diffusive predator-prey model with Allee effect on predator, Discrete Dyn. Nat. Soc., 2013 (2013), 1–10. https://doi.org/10.1155/2013/984960 doi: 10.1155/2013/984960
    [26] Y. V. Tyutyunov, D. Sen, L. I. Titova, M. Banerjee, Predator overcomes the Allee effect due to indirect prey-taxis, Ecol. Complex., 39 (2019), 10772. https://doi.org/10.1016/j.ecocom.2019.100772 doi: 10.1016/j.ecocom.2019.100772
    [27] S. Rana, A. R. Bhowmick, T. Sardar, Invasive dynamics for a predator-prey system with Allee effect in both populations and a special emphasis on predator mortality, Chaos, 31 (2021), 033150. https://doi.org/10.1063/5.0035566 doi: 10.1063/5.0035566
    [28] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, 1$^{st}$ edition, Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-1140-2
    [29] R. J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, 1$^{st}$ edition, Society for Industrial and Applied Mathematics, Philadelphia, 2007. https://doi.org/10.1137/1.9780898717839
    [30] D. Ghosh, P. K. Santra, G. S. Mahapatra, A three-component prey-predator system with interval number, Math. Model. Numer. Simul. Appl., 3 (2023), 1–16. https://api.semanticscholar.org/CorpusID: 258151606
    [31] P. A. Naik, Z. Eskandari, H. E. Shahraki, Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model, Math. Model. Numer. Simul. Appl., 1 (2021), 95–101. https://doi.org/10.53391/mmnsa.2021.01.009 doi: 10.53391/mmnsa.2021.01.009
    [32] P. A. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math., 413 (2022), 114401. https://doi.org/10.1016/j.cam.2022.114401 doi: 10.1016/j.cam.2022.114401
    [33] M. Manica, R. Rosa, A. Pugliese, L. Bolzoni, Exclusion and spatial segregation in the apparent competition between two hosts sharing macroparasites, Theor. Popul. Biol., 86 (2013), 12–22. https://doi.org/10.1016/j.tpb.2013.03.002 doi: 10.1016/j.tpb.2013.03.002
    [34] L. D. Fernandes, M. A. Aguiar, Turing patterns and apparent competition in predator-prey food webs on networks, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 86 (2012), 056203. https://doi.org/10.1103/PhysRevE.86.056203 doi: 10.1103/PhysRevE.86.056203
    [35] H. Chen, C. Zhang, Bifurcations and hydra effects in a reaction-diffusion predator-prey model with Holling II functional response, J. Appl. Anal. Comput., 13 (2023), 424–444. https://doi.org/10.11948/20220221 doi: 10.11948/20220221
    [36] M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal Fract., 4 (2020), 35. https://doi.org/10.3390/fractalfract4030035 doi: 10.3390/fractalfract4030035
    [37] A. Chatterjee, S. Pal, A predator-prey model for the optimal control of fish harvesting through the imposition of a tax, Int. J. Optim. Control, Theor. Appl., 13 (2023), 68–80. https://doi.org/10.11121/ijocta.2023.1218 doi: 10.11121/ijocta.2023.1218
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1224) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog