Research article Special Issues

High-order rational-type solutions of the analogous (3+1)-dimensional Hirota-bilinear-like equation


  • Received: 11 August 2023 Revised: 10 October 2023 Accepted: 13 October 2023 Published: 18 October 2023
  • In this article, a new dynamical system equation named the (3+1)-dimensional Hirota-bilinear-like equation (HBLE) was constructed. The generalized Hirota bilinear method was applied to obtain this new HBLE in (3+1) dimensions. This new HBLE possesses a similar bilinear form to the original (3+1)-dimensional Hirota bilinear equation, but with additional nonlinear terms. A set of high-order rational solutions is constructed for the given equation, generated from polynomial solutions to the associated generalized bilinear equation. The analyticity conditions of the resulting solutions were investigated and six groups of general solutions were derived. In addition, the shape and surface of the high-order rational function solutions and their dynamic behaviors were studied by utilizing Maple.

    Citation: Wenting Li, Ailing Jiao, Wei Liu, Zhaoying Guo. High-order rational-type solutions of the analogous (3+1)-dimensional Hirota-bilinear-like equation[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19360-19371. doi: 10.3934/mbe.2023856

    Related Papers:

  • In this article, a new dynamical system equation named the (3+1)-dimensional Hirota-bilinear-like equation (HBLE) was constructed. The generalized Hirota bilinear method was applied to obtain this new HBLE in (3+1) dimensions. This new HBLE possesses a similar bilinear form to the original (3+1)-dimensional Hirota bilinear equation, but with additional nonlinear terms. A set of high-order rational solutions is constructed for the given equation, generated from polynomial solutions to the associated generalized bilinear equation. The analyticity conditions of the resulting solutions were investigated and six groups of general solutions were derived. In addition, the shape and surface of the high-order rational function solutions and their dynamic behaviors were studied by utilizing Maple.



    加载中


    [1] Y. Zhou, Lump and rogue wave solutions to (1+1)-dimensional evolution equations, Partial Differ. Equations Appl. Math., 5 (2022), 100252. https://doi.org/10.1016/j.padiff.2021.100252 doi: 10.1016/j.padiff.2021.100252
    [2] Q. Li, W. Shan, P. Wang, H. Cui, Breather, lump and N-soliton wave solutions of the (2+1)-dimensional coupled nonlinear partial differential equation with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 106 (2022), 106098. https://doi.org/10.1016/j.cnsns.2021.106098 doi: 10.1016/j.cnsns.2021.106098
    [3] A. Tripathy, S. Sahoo, H. Rezazadeh, Z. P. Izgi, M. S. Osman, Dynamics of damped and undamped wave natures in ferromagnetic materials, Optik, 281 (2023), 170817. https://doi.org/10.1016/j.ijleo.2023.170817 doi: 10.1016/j.ijleo.2023.170817
    [4] H. F. Ismael, T. A. Sulaiman, H. R. Nabi, W. Mahmoud, M. S. Osman, Geometrical patterns of time variable Kadomtsev-Petviashvili (Ⅰ) equation that models dynamics of waves in thin films with high surface tension, Nonlinear Dyn., 111 (2023), 9457–9466. https://doi.org/10.1007/s11071-023-08319-8 doi: 10.1007/s11071-023-08319-8
    [5] L. Akinyemi, A. Houwe, S. Abbagari, A. M. Wazwaz, H. M. Alshehri, M. S. Osman, Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber, Optik, 288 (2023), 171202. https://doi.org/10.1016/j.ijleo.2023.171202 doi: 10.1016/j.ijleo.2023.171202
    [6] M. A. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, London, 1991. https://doi.org/10.1017/CBO9780511623998
    [7] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2022. https://doi.org/10.1017/CBO9780511606359
    [8] S. Malik, H. Almusawa, S. Kumar, A. M. Wazwaz, M. S. Osman, A (2+1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions, Results Phys., 23 (2021), 104043. https://doi.org/10.1016/j.rinp.2021.104043 doi: 10.1016/j.rinp.2021.104043
    [9] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry, Springer Science & Business Media, Dordrecht, 2005. https://doi.org/10.1007/1-4020-3088-6
    [10] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511543043
    [11] F. Tasnim, M. A. Akbar, M. S. Osman, The extended direct algebraic method for extracting analytical solitons solutions to the cubic nonlinear schrödinger equation Involving beta derivatives in space and time, Fractal Fractional, 7 (2023), 426. https://doi.org/10.3390/fractalfract7060426 doi: 10.3390/fractalfract7060426
    [12] S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. Gómez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021), 094006. https://dx.doi.org/10.1088/1402-4896/ac0867 doi: 10.1088/1402-4896/ac0867
    [13] S. Qureshi, M. A. Akanbi, A. A. Shaikh, A. S. Wusu, O. M. Ogunlaran, W. Mahmoud, et al., A new adaptive nonlinear numerical method for singular and stiff differential problems, Alexandria Eng. J., 74 (2023), 585–597. https://doi.org/10.1016/j.aej.2023.05.055 doi: 10.1016/j.aej.2023.05.055
    [14] K. Hosseini, M. Mirzazadeh, D. Baleanu, S. Salahshour, L. Akinyemi, Optical solitons of a high-order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect, Opt. Quant. Electron., 54 (2022), 177. https://doi.org/10.1007/s11082-022-03522-0 doi: 10.1007/s11082-022-03522-0
    [15] L. Akinyemi, E. Morazara, Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev-Petviashvili equation, Nonlinear Dyn., 111 (2023), 4683–4707. https://doi.org/10.1007/s11071-022-08087-x doi: 10.1007/s11071-022-08087-x
    [16] A. Houwe, S. Abbagari, L. Akinyemi, H. Rezazadeh, S. Y. Doka, Peculiar optical solitons and modulated waves patterns in anti-cubic nonlinear media with cubic-quintic nonlinearity, Opt. Quant. Electron., 55 (2023), 719. https://doi.org/10.1007/s11082-023-04950-2 doi: 10.1007/s11082-023-04950-2
    [17] D. Ntiamoah, W. Ofori-Atta, L. Akinyemi, The higher-order modified Korteweg-de Vries equation: Its soliton, breather and approximate solutions, J. Ocean Eng. Sci., (2022). https://doi.org/10.1016/j.joes.2022.06.042 doi: 10.1016/j.joes.2022.06.042
    [18] H. F. Ismael, H. Bulut, C. Park, M. S. Osman, M-lump, N-soliton solutions, and the collision phenomena for the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Results Phys., 19 (2020), 103329. https://doi.org/10.1016/j.rinp.2020.103329 doi: 10.1016/j.rinp.2020.103329
    [19] S. Kumar, M. Niwas, M. S. Osman, M. A. Abdou, Abundant different types of exact soliton solution to the (4+1)-dimensional Fokas and (2+1)-dimensional breaking soliton equations, Commun. Theor. Phys., 73 (2021), 105007. https://dx.doi.org/10.1088/1572-9494/ac11ee doi: 10.1088/1572-9494/ac11ee
    [20] R. Ur-Rahman, M. M. M. Qousini, A. Alshehri, S. M. Eldin, K. El-Rashidy, M. S. Osman, Evaluation of the performance of fractional evolution equations based on fractional operators and sensitivity assessment, Results Phys., 49 (2023), 106537. https://doi.org/10.1016/j.rinp.2023.106537 doi: 10.1016/j.rinp.2023.106537
    [21] K. K. Ali, M. A. A. E. Salam, E. M. H. Mohamed, B. Samet, S. Kumar, M. S. Osman, Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series, Adv. Differ. Equations, 494 (2020), 2020. https://doi.org/10.1186/s13662-020-02951-z doi: 10.1186/s13662-020-02951-z
    [22] M. A. Chowdhury, M. M. Miah, M. A. Iqbal, H. M. Alshehri, D. Baleanu, M. S. Osman, Advanced exact solutions to the nano-ionic currents equation through MTs and the soliton equation containing the RLC transmission line, Eur. Phys. J. Plus Vol., 138 (2023), 502. https://doi.org/10.1140/epjp/s13360-023-04105-y doi: 10.1140/epjp/s13360-023-04105-y
    [23] M. M. Miah, M. A. Iqbal, M. S. Osman, A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions tension, Commun. Theor. Phys., 75 (2023), 085008. https://dx.doi.org/10.1088/1572-9494/ace155 doi: 10.1088/1572-9494/ace155
    [24] W. Ma, Generalized bilinear differential equations, Stud. Nonlinear Sci., 2 (2011), 140–144. https://api.semanticscholar.org/CorpusID:6958538
    [25] W. Ma, Bilinear equations, Bell polynomials and linear superposition principle, J. Phys. Conf. Ser., 411 (2013), 012021. https://doi.org/10.1088/1742-6596/411/1/012021 doi: 10.1088/1742-6596/411/1/012021
    [26] K. Shi, B. Ren, Dynamics of mixed lump-soliton solutions to the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli like equation, Partial Differ. Equations Appl. Math., 5 (2022), 100276. https://doi.org/10.1016/j.padiff.2022.100276 doi: 10.1016/j.padiff.2022.100276
    [27] S. Batwa, W. Ma, A study of lump-type and interaction solutions to a (3+1)-dimensional Jimbo-Miwa-like equation, Comput. Math. Appl., 76 (2018), 1576–1582. https://doi.org/10.1016/j.camwa.2018.07.008 doi: 10.1016/j.camwa.2018.07.008
    [28] Y. Sun, W. Ma, J. Yu, C. M. Khalique, Dynamics of lump solitary wave of Kadomtsev-Petviashvili-Boussinesq-like equation, Comput. Math. Appl., 78 (2019), 840–847. https://doi.org/10.1016/j.camwa.2019.03.001 doi: 10.1016/j.camwa.2019.03.001
    [29] T. Jia, Y. Chai, H. Hao, Multi-soliton solutions and Breathers for the generalized coupled nonlinear Hirota equations via the Hirota method, Superlattices Microstruct., 105 (2017), 172–182. https://doi.org/10.1016/j.spmi.2016.10.091 doi: 10.1016/j.spmi.2016.10.091
    [30] M. Dong, S. Tian, X. Yan, L. Zou, Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation, Comput. Math. Appl., 75 (2018), 957–964. https://doi.org/10.1016/j.camwa.2017.10.037 doi: 10.1016/j.camwa.2017.10.037
    [31] S. Chen, Z. Yan, The Hirota equation: Darboux transform of the Riemann-Hilbert problem and higher-order rogue waves, Appl. Math. Lett., 95 (2019), 65–71. https://doi.org/10.1016/j.aml.2019.03.020 doi: 10.1016/j.aml.2019.03.020
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(973) PDF downloads(72) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog