Research article

Extinction and stationary distribution of stochastic predator-prey model with group defense behavior


  • Received: 10 June 2022 Revised: 17 August 2022 Accepted: 22 August 2022 Published: 06 September 2022
  • Considering that many prey populations in nature have group defense behavior, and the relationship between predator and prey is usually affected by environmental noise, a stochastic predator-prey model with group defense behavior is established in this paper. Some dynamical properties of the model, including the existence and uniqueness of global positive solution, sufficient conditions for extinction and unique ergodic stationary distribution, are investigated by using qualitative theory of stochastic differential equations, Lyapunov function analysis method, Itô formula, etc. Furthermore, the effects of group defense behavior and environmental noise on population stability are also discussed. Finally, numerical simulations are carried out to illustrate that the effects of environmental noise on both populations are negative, the appropriate group defense level of prey can maintain the stability of the relationship between two populations, and the survival threshold is strongly influenced by the intrinsic growth rate of prey population and the intensity of environmental noise.

    Citation: Yansong Pei, Bing Liu, Haokun Qi. Extinction and stationary distribution of stochastic predator-prey model with group defense behavior[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610

    Related Papers:

  • Considering that many prey populations in nature have group defense behavior, and the relationship between predator and prey is usually affected by environmental noise, a stochastic predator-prey model with group defense behavior is established in this paper. Some dynamical properties of the model, including the existence and uniqueness of global positive solution, sufficient conditions for extinction and unique ergodic stationary distribution, are investigated by using qualitative theory of stochastic differential equations, Lyapunov function analysis method, Itô formula, etc. Furthermore, the effects of group defense behavior and environmental noise on population stability are also discussed. Finally, numerical simulations are carried out to illustrate that the effects of environmental noise on both populations are negative, the appropriate group defense level of prey can maintain the stability of the relationship between two populations, and the survival threshold is strongly influenced by the intrinsic growth rate of prey population and the intensity of environmental noise.



    加载中


    [1] S. L. Lima, L. M. Dill, Behavioral decisions made under the risk of predation: a review and prospectus, Can. J. Zool., 68 (1990), 619–640. https://doi.org/10.1139/z90-092 doi: 10.1139/z90-092
    [2] P. Cong, M. Fan, X. Zou, Dynamics of a three-species food chain model with fear effect, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105809. https://doi.org/10.1016/j.cnsns.2021.105809 doi: 10.1016/j.cnsns.2021.105809
    [3] H. Qi, X. Meng, T. Hayat, A. Hobiny, Stationary distribution of a stochastic predator–prey model with hunting cooperation, Appl. Math. Lett., 124 (2022), 107662. https://doi.org/10.1016/j.aml.2021.107662 doi: 10.1016/j.aml.2021.107662
    [4] H. Qi, X. Meng, Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect, Appl. Math. Lett., 113 (2021), 106846. https://doi.org/10.1016/j.aml.2020.106846 doi: 10.1016/j.aml.2020.106846
    [5] Y. Wang, X. Zou, On a predator–prey system with digestion delay and anti-predation strategy, J. Nonlinear Sci., 30 (2020), 1579–1605. https://doi.org/10.1007/s00332-020-09618-9 doi: 10.1007/s00332-020-09618-9
    [6] G. Tang, S. Tang, R. A. Cheke, Global analysis of a Holling type Ⅱ predator-prey model with a constant prey refuge, Nonlinear Dyn., 76 (2014), 635–647. https://doi.org/10.1007/s11071-013-1157-4 doi: 10.1007/s11071-013-1157-4
    [7] W. Cresswell, J. L. Quinn, Faced with a choice, sparrowhawks more often attack the more vulnerable prey group, Oikos, 104 (2004), 71–76. https://doi.org/10.1111/j.0030-1299.2004.12814.x doi: 10.1111/j.0030-1299.2004.12814.x
    [8] J. Wei, W. Shao, M. Cao, J. Ge, P. Yang, L. Chen, et al., Phenylacetonitrile in locusts facilitates an antipredator defense by acting as an olfactory aposematic signal and cyanide precursor, Sci. Adv., 5 (2019), eaav5495. https://doi.org/10.1126/sciadv.aav5495 doi: 10.1126/sciadv.aav5495
    [9] A. A. Salih, M. Baraibar, K. K. Mwangi, G. Artan, Climate change and locust outbreak in East Africa, Nat. Clim. Change, 10 (2020), 584–585. https://doi.org/10.1038/s41558-020-0835-8 doi: 10.1038/s41558-020-0835-8
    [10] C. N. Meynard, M. Lecoq, M. P. Chapuis, C. Piou, On the relative role of climate change and management in the current desert locust outbreak in East Africa, Global Change Biol., 26 (2020), 3753–3755. https://doi.org/10.1111/gcb.15137 doi: 10.1111/gcb.15137
    [11] H. I. Freedman, G. S. Wolkowicz, Predator-prey systems with group defence: the paradox of enrichment revisited, Bull. Math. Biol., 48 (1986), 493–508. https://doi.org/10.1016/S0092-8240(86)90004-2 doi: 10.1016/S0092-8240(86)90004-2
    [12] H. I. Freedman, S. Ruan, Hopf bifurcation in three-species food chain models with group defense, Math. Biosci., 111 (1992), 73–87. https://doi.org/10.1016/0025-5564(92)90079-C doi: 10.1016/0025-5564(92)90079-C
    [13] G. Gimmelli, B. W. Kooi, E. Venturino, Ecoepidemic models with prey group defense and feeding saturation, Ecol. Complexity, 22 (2015), 50–58. https://doi.org/10.1016/j.ecocom.2015.02.004 doi: 10.1016/j.ecocom.2015.02.004
    [14] C. Xu, S. Yuan, T. Zhang, Global dynamics of a predator-prey model with defense mechanism for prey, Appl. Math. Lett., 62 (2016), 42–48. https://doi.org/10.1016/j.aml.2016.06.013 doi: 10.1016/j.aml.2016.06.013
    [15] X. Cheng, J. Luo, Y. Zhao, Dynamic analysis of a population competition model with disease in one species and group defense in another species, Int. J. Bifurcation Chaos, 30 (2020), 2050181. https://doi.org/10.1142/S0218127420501813 doi: 10.1142/S0218127420501813
    [16] M. Das, G. P. Samanta, A prey-predator fractional order model with fear effect and group defense, Int. J. Dyn. Control, 9 (2021), 334–349. https://doi.org/10.1007/s40435-020-00626-x doi: 10.1007/s40435-020-00626-x
    [17] Y. Du, B. Niu, J. Wei, A predator-prey model with cooperative hunting in the predator and group defense in the prey, Discrete Contin. Dyn. Syst. B, (2021). https://doi.org/10.3934/dcdsb.2021298 doi: 10.3934/dcdsb.2021298
    [18] D. Xiao, S. Ruan, Codimension two bifurcations in a predator-prey system with group defense, Int. J. Bifurcation Chaos, 11 (2001), 2123–2131. https://doi.org/10.1142/S021812740100336X doi: 10.1142/S021812740100336X
    [19] P. H. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16–31. https://doi.org/10.2307/2333042 doi: 10.2307/2333042
    [20] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Processes Appl., 97 (2002), 95–110. https://doi.org/10.1016/s0304-4149(01)00126-0 doi: 10.1016/s0304-4149(01)00126-0
    [21] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856x doi: 10.1137/10081856x
    [22] D. Jiang, N. Shi, X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588–597. https://doi.org/10.1016/j.jmaa.2007.08.014 doi: 10.1016/j.jmaa.2007.08.014
    [23] C. Ji, D. Jiang, N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482–498. https://doi.org/10.1016/j.jmaa.2009.05.039 doi: 10.1016/j.jmaa.2009.05.039
    [24] B. Wen, Z. Teng, Z. Li, The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence, Phys. A Stat. Mech. Appl., 508 (2018), 532–549. https://doi.org/10.1016/j.physa.2018.05.056 doi: 10.1016/j.physa.2018.05.056
    [25] Y. Chen, B. Wen, Z. Teng, The global dynamics for a stochastic SIS epidemic model with isolation, Phys. A, 492 (2018), 1604–1624. https://doi.org/10.1016/j.physa.2017.11.085 doi: 10.1016/j.physa.2017.11.085
    [26] X. Meng, S. Zhao, T. Feng, T. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433 (2016), 227–242. https://doi.org/10.1016/j.jmaa.2015.07.056 doi: 10.1016/j.jmaa.2015.07.056
    [27] S. He, S. Tang, L. Rong, A discrete stochastic model of the COVID-19 outbreak: forecast and control, Math. Biosci. Eng., 17 (2020), 2792–2804. https://doi.org/10.3934/mbe.2020153 doi: 10.3934/mbe.2020153
    [28] S. Li, S. Zhang, A research of pest management SI stochastic model with effect of pesticides function, J. Syst. Sci. Math. Sci., 37 (2017), 1379. https://doi.org/10.12341/jssms13165 doi: 10.12341/jssms13165
    [29] S. Zhang, S. Yuan, T. Zhang, A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments, Appl. Math. Comput., 413 (2022), 126598. https://doi.org/10.1016/j.amc.2021.126598 doi: 10.1016/j.amc.2021.126598
    [30] M. Liu, H. Qiu, K. Wang, A remark on a stochastic predator-prey system with time delays, Appl. Math. Lett., 26 (2013), 318–323. https://doi.org/10.1016/j.aml.2012.08.015 doi: 10.1016/j.aml.2012.08.015
    [31] A. Skvortsov, B. Ristic, A. Kamenev, Predicting population extinction from early observations of the Lotka-Volterra system, Appl. Math. Comput., 320 (2018), 371–379. https://doi.org/10.1016/j.amc.2017.09.029 doi: 10.1016/j.amc.2017.09.029
    [32] F. Vadillo, Comparing stochastic Lotka-Volterra predator-prey models, Appl. Math. Comput., 360 (2019), 181–189. https://doi.org/10.1016/j.amc.2019.05.002 doi: 10.1016/j.amc.2019.05.002
    [33] G. Cai, Y. Lin, Stochastic analysis of the Lotka-Volterra model for ecosystems, Phys. Rev. E, 70 (2004), 041910. https://doi.org/10.1103/PhysRevE.70.041910 doi: 10.1103/PhysRevE.70.041910
    [34] Q. Liu, D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756. https://doi.org/10.1016/j.aml.2020.106756 doi: 10.1016/j.aml.2020.106756
    [35] M. Liu, K. Wang, Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1114–1121. https://doi.org/10.1016/j.cnsns.2010.06.015 doi: 10.1016/j.cnsns.2010.06.015
    [36] Q. Liu, L. Zu, D. Jiang, Dynamics of stochastic predator-prey models with Holling Ⅱ functional response, Commun. Nonlinear Sci. Numer. Simul., 37 (2016), 62–76. https://doi.org/10.1016/j.cnsns.2016.01.005 doi: 10.1016/j.cnsns.2016.01.005
    [37] M. Liu, M. Deng, Analysis of a stochastic hybrid population model with Allee effect, Appl. Math. Comput., 364 (2020), 124582. https://doi.org/10.1016/j.amc.2019.124582 doi: 10.1016/j.amc.2019.124582
    [38] S. Zhang, T. Zhang, S. Yuan, Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation, Ecol. Complexity, 45 (2021), 100889. https://doi.org/10.1016/j.ecocom.2020.100889 doi: 10.1016/j.ecocom.2020.100889
    [39] X. Mao, C. Yuan, Stochastic Differential Equations With Markovian Switching, Imperial College Press, 2006. http://doi.org/10.1142/p473
    [40] R. Khasminskii, Stochastic stability of differential equations, Springer Berlin, 2011. https://doi.org/10.1007/978-3-642-23280-0
    [41] S. Marino, I.B. Hogue, C. J. Ray, D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1914) PDF downloads(105) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog