Smoking has gradually become a very common behavior, and the related situation in different groups also presents different forms. Due to the differences of individual smoking cessation time and the interference of environmental factors in the spread of smoking behavior, we establish a stochastic giving up smoking model with quit-smoking duration. We also consider the saturated incidence rate. The total population is composed of potential smokers, smokers, quitters and removed. By using Itô's formula and constructing appropriate Lyapunov functions, we first ensure the existence of a unique global positive solution of the stochastic model. In addition, a threshold condition for extinction and permanence of smoking behavior is deduced. If the intensity of white noise is small, and $ \widetilde{\mathcal{R}}_0 < 1 $, smokers will eventually become extinct. If $ \widetilde{\mathcal{R}}_0 > 1 $, smoking will last. Then, the sufficient condition for the existence of a unique stationary distribution of the smoking phenomenon is studied as $ R_0^s > 1 $. Finally, conclusions are explained by numerical simulations.
Citation: Yajuan Guo, Zijian Liu, Yuanshun Tan, Yawei Liu. Modeling and analysis of a stochastic giving-up-smoking model with quit smoking duration[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20576-20598. doi: 10.3934/mbe.2023910
Smoking has gradually become a very common behavior, and the related situation in different groups also presents different forms. Due to the differences of individual smoking cessation time and the interference of environmental factors in the spread of smoking behavior, we establish a stochastic giving up smoking model with quit-smoking duration. We also consider the saturated incidence rate. The total population is composed of potential smokers, smokers, quitters and removed. By using Itô's formula and constructing appropriate Lyapunov functions, we first ensure the existence of a unique global positive solution of the stochastic model. In addition, a threshold condition for extinction and permanence of smoking behavior is deduced. If the intensity of white noise is small, and $ \widetilde{\mathcal{R}}_0 < 1 $, smokers will eventually become extinct. If $ \widetilde{\mathcal{R}}_0 > 1 $, smoking will last. Then, the sufficient condition for the existence of a unique stationary distribution of the smoking phenomenon is studied as $ R_0^s > 1 $. Finally, conclusions are explained by numerical simulations.
[1] | B. L. Zhao, Smoking, free radicals and health, Acta. Bioph. Sin., 28 (2012), 332–340. https://doi.org/10.3724/SP.J.1260.2012.20042 doi: 10.3724/SP.J.1260.2012.20042 |
[2] | Y. Qi, Q. Yan, L. J. Sun, D. L. Yang, C. Y. Luo, Trends of smoking and drinking behaviors among adolescents in Shanghai from 2004 to 2019, Chin. J. Sch. Health., 43 (2022), 1003–1006. https://doi.org/10.16835/j.cnki.1000-9817.2022.07.011 doi: 10.16835/j.cnki.1000-9817.2022.07.011 |
[3] | J. H. Li, J. F. Liu, Current research on hazards of smoking to human health, Int. J. Intern. Med., 35 (2008), 284–287. |
[4] | C. Castillo-Garsow, G. Jordan-Salivia, A. Rodriguez-Herrera, Mathematical models for the dynamics of tobacco use, recovery, and relapse, Technical Report Series BU-1505-M, Cornell University, 1997. |
[5] | O. Sharomi, A. B. Gumel, Curtailing smoking dynamics: A mathematical modeling approach, Appl. Math. Comput., 195 (2008), 475–499. https://doi.org/10.1016/j.amc.2007.05.012 doi: 10.1016/j.amc.2007.05.012 |
[6] | A. Lahrouz, L. Omari, D. Kiouach, A. Belmaati, Deterministic and stochastic stability of a mathematical model of smoking, Stat. Probab. Lett., 81 (2011), 1276–1284. https://doi.org/10.1016/j.spl.2011.03.029 doi: 10.1016/j.spl.2011.03.029 |
[7] | G. Zaman, Qualitative behavior of giving up smoking models, Bull. Malays. Math. Sci. Soc., 34 (2011), 403–415. https://doi.org/10.1155/2011/214289 doi: 10.1155/2011/214289 |
[8] | F. Guerrero, F. J. Santonja, R. J. Villanueva, Solving a model for the evolution of smoking habit in Spain with homotopy analysis method, Nonlinear Anal. RWA., 14 (2013), 549–558. https://doi.org/10.1016/j.nonrwa.2012.07.015 doi: 10.1016/j.nonrwa.2012.07.015 |
[9] | A. Sharma, A. K. Misra, Backward bifurcation in a smoking cessation model with media campaigns, Appl. Math. Model., 39 (2015), 1087–1098. http://dx.doi.org/10.1016/j.apm.2014.07.022 doi: 10.1016/j.apm.2014.07.022 |
[10] | Q. Din, M. Ozair, T. Hussain, U. Saeed, Qualitative behavior of a smoking model, Adv. Differ. Equation, (2016), 96. http://dx.doi.org/10.1186/s13662-016-0830-6 doi: 10.1186/s13662-016-0830-6 |
[11] | G. U. Rahman, R. Agarwal, L. Liu, A. Khan, Threshold dynamics and optimal control of an age-structured giving up smoking model, Nonlinear Anal. RWA., 43 (2018), 96–120. https://doi.org/10.1016/j.nonrwa.2018.02.006 doi: 10.1016/j.nonrwa.2018.02.006 |
[12] | O. Khyar, J. Danane, K. Allali, Mathematical analysis and optimal control of giving up the smoking model, Int. J. Differ. Equation, (2021), 8673020. https://doi.org/10.1155/2021/8673020 doi: 10.1155/2021/8673020 |
[13] | A. Din, P. Liu, T. Cui, Stochastic stability and optimal control analysis for a tobacco smoking model, Appl. Comput. Math., 10 (2021), 163–185. https://doi.org/10.11648/j.acm.20211006.15 doi: 10.11648/j.acm.20211006.15 |
[14] | Z. Z. Zhang, W. S. Zhang, A time-delayed giving up smoking model with relapse, J. Jishou University (Natural Sciences Edition), 43 (2022), 1–9. https://doi.org/10.13438/j.cnki.jdzk.2022.01.001 doi: 10.13438/j.cnki.jdzk.2022.01.001 |
[15] | R. Ullah, M. Khan, G. Zaman, S. Islam, T. Gul, Dynamical features of a mathematical model on smoking, J. Appl. Environ. Biol. Sci., 6 (2016), 92–96. |
[16] | G. Zaman, Optimal campaign in the smoking dynamics, Comput. Math. Methods. Med., (2011), 163834. https://doi.org/10.1155/2011/163834 doi: 10.1155/2011/163834 |
[17] | Z. Alkhudhari, S. Al-Sheikh, S. Al-Tuwairqi, Global dynamics of a mathematical model on smoking, ISRN Appl. Math., (2014), 847075. http://dx.doi.org/10.1155/2014/847075 doi: 10.1155/2014/847075 |
[18] | H. Alrabaiah, A. Zeb, E. Alzahrani, K. Shah, Dynamical analysis of fractional-order tobacco smoking model containing snuffing class, Alexandr. Eng. J., 60 (2021), 3669–3678. https://doi.org/10.1016/j.aej.2021.02.005 doi: 10.1016/j.aej.2021.02.005 |
[19] | G. Rahman, R. R. Agarwal, Q. Din, Mathematical analysis of giving up smoking model via harmonic mean type incidence rate, Appl. Math. Comput., 354 (2019), 128–148. https://doi.org/10.1016/j.amc.2019.01.053 doi: 10.1016/j.amc.2019.01.053 |
[20] | R. X. Lu, F. Y. Wei, Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence rate, Phys. A, 513 (2019), 572–587. https://doi.org/10.1016/j.physa.2018.09.016 doi: 10.1016/j.physa.2018.09.016 |
[21] | Y. N. Zhao, D. Q. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 34 (2014), 90–93. http://dx.doi.org/10.1016/j.aml.2013.11.002 doi: 10.1016/j.aml.2013.11.002 |
[22] | X. Ran, L. Hu, L. F. Nie, Z. D. Teng, Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate, Appl. Math. Comput., 394 (2021), 125798. https://doi.org/10.1016/j.amc.2020.125798 doi: 10.1016/j.amc.2020.125798 |
[23] | J. H. He, Q. Hou, Dynamic analysis of smoking transmission model, J. Southwest China Normal Univ., 46 (2021), 9–15. https://doi.org/10.13718/j.cnki.xsxb.2021.07.002 doi: 10.13718/j.cnki.xsxb.2021.07.002 |
[24] | S. W. Teklu, B. B. Terefe, Mathematical modeling analysis on the dynamics of university students animosity towards mathematics with optimal control theory, Sci. Rep., 12 (2022), 11578. https://doi.org/10.1038/s41598-022-15376-3 doi: 10.1038/s41598-022-15376-3 |
[25] | X. Wang, B. L. Li, Q. Ge, A giving up smoking model with general nonlinear incidence rate, J. Xinyang Normal Univ., 32 (2019), 362–366. https://doi.org/10.3969/j.issn.1003-0972.2019.03.004 doi: 10.3969/j.issn.1003-0972.2019.03.004 |
[26] | Z. M. Li, N. Y. Su, T. L. Zhang, Analysis on a giving up smoking model with nonlinear infection rate, Math. Pract. Theory, 49 (2019), 262–268. |
[27] | A. Zeb, G. Zaman, S. Momani, Square-root dynamics of a giving up smoking model, Appl. Math. Model., 37 (2013), 5326–5334. http://dx.doi.org/10.1016/j.apm.2012.10.005 doi: 10.1016/j.apm.2012.10.005 |
[28] | Z. Z. Zhang, R. B. Wei, W. J. Xia, Dynamical analysis of a giving up smoking model with time delay, Adv. Differ. Equation, (2019), 505. https://doi.org/10.1186/s13662-019-2450-4 doi: 10.1186/s13662-019-2450-4 |
[29] | X. B. Liu, L. J. Yang, Stability analysis of an SEIQV epidemic model with saturated incidence rate, Nonlinear Anal. RWA., 13 (2012), 2671–2679. https://doi.org/10.1016/j.nonrwa.2012.03.010 doi: 10.1016/j.nonrwa.2012.03.010 |
[30] | Y. M. Chen, S. F. Zou, J. Y. Yang, Global analysis of an SIR epidemic model with infection age and saturated incidence, Nonlinear Anal. RWA., 30 (2016), 16–31. http://dx.doi.org/10.1016/j.nonrwa.2015.11.001 doi: 10.1016/j.nonrwa.2015.11.001 |
[31] | X. Mao, Stochastic Differential Equations and Applications, (second ed.), Horwood Publishing, Chichester, UK, 2007. |
[32] | R. Z. Khas, Miniskii, Stochastic Stability of Differential Equations, Sijthoff Noordhoff, The Netherlands, 1980. |
[33] | D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/s0036144500378302 doi: 10.1137/s0036144500378302 |
[34] | S. Ania, V. Arnutu, V. Capasso, An Introduction to Optimal Control Problems in Life Sciences, Spring Science, New York, 2011. |